921 resultados para Thompson, Francis J.: The reception of Byzantine culture in mediaeval Russia
Resumo:
Polymorphisms in genes that encode chemokines or their receptors can modulate susceptibility to human immunodeficiency virus (HIV) infection and disease progression. The objective of this study was to assess the frequency of polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A and their role in the course of HIV infection in a Southern Brazilian population. Clinical data were obtained from 249 patients for an average period of 6.4 years and genotypes were determined by standard polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. Survival analyses were conducted for three outcomes: CD4+ T-cell counts below 200 cells/µL, acquired immune deficiency syndrome (AIDS) or death. The frequency of the polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A were 0.024, 0.113, 0.487 and 0.207, respectively. CCR5-Δ32 was associated with a reduction in the risk for CD4+ T-cell depletion and with an increased risk for death after AIDS diagnosis. CCR2-64I was associated with a reduction in the risk for developing AIDS. SDF1-3'A was also associated with decreased risk for AIDS, but its effect was only evident when CCR2-64I was present as well. These results highlight the possibility of using these markers as indicators for the prognosis of disease progression and provide evidence for the importance of analysing the effects of gene polymorphisms in a combined fashion.
Resumo:
In this paper, the authors review the literature and share their experience of the principal biological markers of fibrosis for the evaluation of periportal fibrosis (PPF) caused by mansoni schistosomiasis. These biological markers are compared to diagnostic ultrasound (US) scans as means of grading PPF. We also review procollagen type I and III, collagen type IV, laminin, hyaluronic acid (HA), immunoglobulin G, platelets, aspartate aminotransferase to platelet ratio index (APRI) and gamma-glutamyl transpeptidase as markers of the disease. Although there are several good markers for evaluating PPF and portal hypertension, such as HA, platelets or APRI, none can yet replace US. These markers may, however, be used to identify patients at greater risk of developing advanced disease in endemic areas and determine who will need further care and US studies.
Resumo:
Avian malaria parasites (Plasmodium) have a worldwide distribution except for Antarctica. They are transmitted exclusively by mosquito vectors (Diptera: Culicidae) and are of particular interest to health care research due to their phylogenetic relationship with human plasmodia and their ability to cause avian malaria, which is frequently lethal in non-adapted avian hosts. However, different features of avian Plasmodium spp, including their taxonomy and aspects of their life-history traits, need to be examined in more detail. Over the last 10 years, ecologists, evolutionary biologists and wildlife researchers have recognized the importance of studying avian malaria parasites and other related haemosporidians, which are the largest group of the order Haemosporida by number of species. These studies have included understanding the ecological, behavioral and evolutionary aspects that arise in this wildlife host-parasite system. Molecular tools have provided new and exiting opportunities for such research. This review discusses several emerging topics related to the current research of avian Plasmodium spp and some related avian haemosporidians. We also summarize some important discoveries in this field and emphasize the value of using both polymerase chain reaction-based and microscopy-based methods in parallel for wildlife studies. We will focus on the genus Plasmodium, with an emphasis on the distribution and pathogenicity of these parasites in wild birds in Brazil.
Resumo:
Chagas disease, in the Amazon Region as elsewhere, can be considered an enzootic disease of wild animals or an anthropozoonosis, an accidental disease of humans that is acquired when humans penetrate a wild ecosystem or when wild triatomines invade human dwellings attracted by light or searching for human blood. The risk of endemic Chagas disease in the Amazon Region is associated with the following phenomena: (i) extensive deforestation associated with the displacement of wild mammals, which are the normal sources of blood for triatomines, (ii) adaptation of wild triatomines to human dwellings due to the need for a new source of blood for feeding and (iii) uncontrolled migration of human populations and domestic animals that are already infected with Trypanosoma cruzi from areas endemic for Chagas disease to the Amazon Region. Several outbreaks of severe acute cases of Chagas disease, as well as chronic cases, have been described in the Amazon Region. Control measures targeted to avoiding endemic Chagas disease in the Amazon Region should be the following: improving health education in communities, training public health officials and communities for vector and Chagas disease surveillance and training local physicians to recognise and treat acute and chronic cases of Chagas diseases as soon as possible.
Resumo:
Coxiella burnetii is the agent of Q fever , an emergent worldwide zoonosis of wide clinical spectrum. Although C. burnetii infection is typically associated with acute infection, atypical pneumonia and flu-like symptoms, endocarditis, osteoarticular manifestations and severe disease are possible, especially when the patient has a suppressed immune system; however, these severe complications are typically neglected. This study reports the sequencing of the repetitive element IS1111 of the transposase gene of C. burnetii from blood and bronchoalveolar lavage (BAL) samples from a patient with severe pneumonia following methotrexate therapy, resulting in the molecular diagnosis of Q fever in a patient who had been diagnosed with active seronegative polyarthritis two years earlier. To the best of our knowledge, this represents the first documented case of the isolation of C. burnetii DNA from a BAL sample.