951 resultados para Teorias da grande unificação (Fisica nuclear)
Resumo:
Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.
Resumo:
Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.
Resumo:
Cellular signal transduction in response to environmental signals involves a relay of precisely regulated signal amplifying and damping events. A prototypical signaling relay involves ligands binding to cell surface receptors and triggering the activation of downstream enzymes to ultimately affect the subcellular distribution and activity of DNA-binding proteins that regulate gene expression. These so-called signal transduction cascades have dominated our view of signaling for decades. More recently evidence has accumulated that components of these cascades can be multifunctional, in effect playing a conventional role for example as a cell surface receptor for a ligand whilst also having alternative functions for example as transcriptional regulators in the nucleus. This raises new challenges for researchers. What are the cues/triggers that determine which role such proteins play? What are the trafficking pathways which regulate the spatial distribution of such proteins so that they can perform nuclear functions and under what circumstances are these alternative functions most relevant?
Resumo:
LYRIC/AEG-1 and its altered expression have been linked to carcinogenesis in prostate, brain and melanoma as well as promoting chemoresistance and metastasis in breast cancer. LYRIC/AEG-1 function remains unclear, although LYRIC/AEG-1 is activated by oncogenic HA-RAS, through binding of c-myc to its promoter, which in turn regulates the key components of the PI3-kinase and nuclear factor-kappaB pathways. We have identified the transcriptional repressor PLZF as an interacting protein of LYRIC/AEG through a yeast two-hybrid screen. PLZF regulates the expression of genes involved in cell growth and apoptosis including c-myc. Coexpression of LYRIC/AEG-1 with PLZF leads to a reduction in PLZF-mediated repression by reducing PLZF binding to promoters. We have confirmed that nuclear LYRIC/AEG-1 and PLZF interact in mammalian cells via the N- and C termini of LYRIC/AEG-1 and a region C terminal to the RD2 domain of PLZF. Both proteins colocalize to nuclear bodies containing histone deacetylases, which are known to promote PLZF-mediated repression. Our data suggest one mechanism for cells with altered LYRIC/AEG-1 expression to evade apoptosis and increase cell growth during tumourigenesis through the regulation of PLZF repression.
Resumo:
A subset of proteins predominantly associated with early endosomes or implicated in clathrin-mediated endocytosis can shuttle between the cytoplasm and the nucleus. Although the endocytic functions of these proteins have been extensively studied, much less effort has been expended in exploring their nuclear roles. Membrane trafficking proteins can affect signalling and proliferation and this can be achieved either at a nuclear or endocytic level. Furthermore, some proteins, such as Huntingtin interacting protein 1, are known as cancer biomarkers. This review will highlight the limits of our understanding of their nuclear functions and the relevance of this to signalling and oncogenesis.
Resumo:
PURPOSE: LYRIC/AEG-1 has been reported to influence breast cancer survival and metastases, and its altered expression has been found in a number of cancers. The cellular function of LYRIC/AEG-1 has previously been related to its subcellular distribution in cell lines. LYRIC/AEG-1 contains three uncharacterized nuclear localization signals (NLS), which may regulate its distribution and, ultimately, function in cells.
EXPERIMENTAL DESIGN: Immunohistochemistry of a human prostate tissue microarray composed of 179 prostate cancer and 24 benign samples was used to assess LYRIC/AEG-1 distribution. Green fluorescent protein-NLS fusion proteins and deletion constructs were used to show the ability of LYRIC/AEG-1 NLS to target green fluorescent protein from the cytoplasm to the nucleus. Immunoprecipitation and Western blotting were used to show posttranslational modification of LYRIC/AEG-1 NLS regions.
RESULTS: Using a prostate tissue microarray, significant changes in the distribution of LYRIC/AEG-1 were observed in prostate cancer as an increased cytoplasmic distribution in tumors compared with benign tissue. These differences were most marked in high grade and aggressive prostate cancers and were associated with decreased survival. The COOH-terminal extended NLS-3 (amino acids 546-582) is the predominant regulator of nuclear localization, whereas extended NLS-1 (amino acids 78-130) regulates its nucleolar localization. Within the extended NLS-2 region (amino acids 415-486), LYRIC/AEG-1 can be modified by ubiquitin almost exclusively within the cytoplasm.
CONCLUSIONS: Changes in LYRIC/AEG-1 subcellular distribution can predict Gleason grade and survival. Two lysine-rich regions (NLS-1 and NLS-3) can target LYRIC/AEG-1 to subcellular compartments whereas NLS-2 is modified by ubiquitin in the cytoplasm.
Resumo:
Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) gamma and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARgamma, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription-polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARgamma and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced.
Resumo:
Ligand-dependent nuclear import is crucial for the function of the androgen receptor (AR) in both health and disease. The unliganded AR is retained in the cytoplasm but, on binding 5alpha-dihydrotestosterone, it translocates into the nucleus and alters transcription of its target genes. Nuclear import of AR is mediated by the nuclear import factor importin-alpha, which functions as a receptor that recognises and binds to specific nuclear localisation signal (NLS) motifs on cargo proteins. We show here that the AR binds to importin-alpha directly, albeit more weakly than the NLS of SV40 or nucleoplasmin. We describe the 2.6-angstroms-resolution crystal structure of the importin-alpha-AR-NLS complex, and show that the AR binds to the major NLS-binding site on importin-alpha in a manner different from most other NLSs. Finally, we have shown that pathological mutations within the NLS of AR that are associated with prostate cancer and androgen-insensitivity syndrome reduce the binding affinity to importin-alpha and, subsequently, retard nuclear import; surprisingly, however, the transcriptional activity of these mutants varies widely. Thus, in addition to its function in the nuclear import of AR, the NLS in the hinge region of AR has a separate, quite distinct role on transactivation, which becomes apparent once nuclear import has been achieved.
Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors
Resumo:
Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription.
Resumo:
If there is one uncontroversial point in nuclear weapons politics it is that uninventing nuclear weapons is impossible. This article seeks to make this claim controversial by showing that it is premised on attenuated understandings of invention and the status of objects operative through familiar but problematic conceptual dualisms. The claimed impossibility of uninvention is an assertion that invention is irreversible. Drawing on “new materialism” this article produces a different understanding of invention, reinvention, and uninvention as ontologically similar practices of techno-political invention. On the basis of empirical material on the invention and re-invention of nuclear weapons, and an in-depth ethnography of laboratories inventing a portable radiation detector, both the process of invention and the “objects” themselves (weapons and detectors) are shown to be fragile and not wholly irreversible processes of assembling diverse actors (human and non-human) and provisionally stabilizing their relations. Nuclear weapons cannot be uninvented! Why not?
Resumo:
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.
Resumo:
The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.
Resumo:
BACKGROUND: Dyslipidemia has been linked to vascular complications of Type 1 diabetes (T1DM). We investigated the prospective associations of nuclear magnetic resonance-determined lipoprotein subclass profiles (NMR-LSP) and conventional lipid profiles with carotid intima-media thickness (IMT) in T1DM.
METHODS: NMR-LSP and conventional lipids were measured in a subset of Diabetes Control and Complications Trial (DCCT) participants (n = 455) at study entry ('baseline', 1983-89), and were related to carotid IMT determined by ultrasonography during the observational follow-up of the DCCT, the Epidemiology of Diabetes Interventions and Complications (EDIC) study, at EDIC Year 12 (2004-2006). Associations were defined using multiple linear regression stratified by gender, and following adjustment for HbA1c, diabetes duration, body mass index, albuminuria, DCCT randomization group, smoking status, statin use, and ultrasound devices.
RESULTS: In men, significant positive associations were observed between some baseline NMR-subclasses of LDL (total IDL/LDL and large LDL) and common and/or internal carotid IMT, and between conventional total- and LDL-cholesterol and non-HDL-cholesterol and common carotid IMT, at EDIC Year 12; these persisted in adjusted analyses (p < 0.05). Large LDL particles and conventional triglycerides were positively associated with common carotid IMT changes over 12 years (p < 0.05). Inverse associations of mean HDL diameter and large HDL concentrations, and positive associations of small LDL with common and/or internal carotid IMT (all p < 0.05) were found, but did not persist in adjusted analyses. No significant associations were observed in women.
CONCLUSION: NMR-LSP-derived LDL particles, in addition to conventional lipid profiles, may help in identifying men with T1DM at highest risk for vascular disease.
Resumo:
PURPOSE: To quantify the association between siblings in age-related nuclear cataract, after adjusting for known environmental and personal risk factors. METHODS: All participants (probands) in the Salisbury Eye Evaluation (SEE) project and their locally resident siblings underwent digital slit lamp photography and were administered a questionnaire to assess risk factors for cataract including: age, gender, lifetime sun exposure, smoking and diabetes history, and use of alcohol and medications such as estrogens and steroids. In addition, blood pressure, body mass index, and serum antioxidants were measured in all participants. Lens photographs were graded by trained observers masked to the subjects' identity, using the Wilmer Cataract Grading System. The odds ratio for siblings for affectedness with nuclear cataract and the sibling correlation of nuclear cataract grade, after adjusting for covariates, were estimated with generalized estimating equations. RESULTS: Among 307 probands (mean age, 77.6 +/- 4.5 years) and 434 full siblings (mean age, 72.4 +/- 7.4 years), the average sibship size was 2.7 per family. After adjustment for covariates, the probability of development of nuclear cataract was significantly increased (odds ratio [OR] = 2.07, 95% confidence interval [CI], 1.30-3.30) among individuals with a sibling with nuclear cataract (nuclear grade > or = 3.0). The final fitted model indicated a magnitude of heritability for nuclear cataract of 35.6% (95% CI: 21.0%-50.3%) after adjustment for the covariates. CONCLUSIONS: Findings in this study are consistent with a genetic effect for age-related nuclear cataract, a common and clinically significant form of lens opacity.