976 resultados para Temperature Dependence
Resumo:
The natural remanent magnetization (NRM) of ocean basalts, giving rise to the pattern of marine magnetic anomalies, is known to be of comparatively low intensity for about 20 Ma old oceanic crust. The aim of this study is to detect possible peculiarities in the rock magnetic properties of ocean basalts of this age, and to establish a link between magnetomineralogy, rock magnetic parameters, and the low NRM intensity. Ocean basalts covering ages from 0.7 to 135 Ma were selected for rock magnetic experiments and their room temperature hysteresis parameters, Curie temperature and temperature dependence of saturation magnetization MS(T) was determined and complemented by reflected light microscopy. The majority of samples is magnetically dominated by titanomagnetite and titanomaghemite with increasing oxidation state with age. For these, a strong dependence of hysteresis parameters on the age of the samples is found. The samples have a minimum in saturation magnetization and a maximum in magnetic stability in the age interval ranging from approximately 10 to 40 Ma, coinciding with the age interval of low NRM intensity. The observed change in saturation magnetization is in the same order as that for the NRM intensity. A further peculiarity of the titanomaghemites from this age interval is the shape of their MS(T) curves, which display a maximum above room temperature (Neel P-type) and, sometimes, a self-reversal of magnetization below room temperature (Neel N-type). These special rock magnetic properties can be explained by titanomagnetite low-temperature oxidation and highly oxidized titanomaghemites in the age interval 10-40 Ma. A corresponding measurement of the NRM at elevated temperature allows to identify a maximum in NRM intensity above room temperature for the samples in that age interval. This provides evidence that the NRM is equally carried by titanomaghemites and that the low NRM intensities for about 20 Ma old ocean basalts are caused consequently by the low saturation magnetization of these titanomaghemites.
Resumo:
For many strongly correlated metals with layered crystal structure the temperature dependence of the interlayer resistance is different to that of the intralayer resistance. We consider a small polaron model which exhibits this behavior, illustrating how the interlayer transport is related to the coherence of quasiparticles within the layers. Explicit results are also given for the electron spectral function, interlayer optical conductivity, and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and the other incoherent (dominant at high temperatures).
Resumo:
The influence of an organically modified clay on the curing behavior of three epoxy systems widely used in the aerospace industry and of different structures and functionalities, was studied. Diglycidyl ether of bisphenol A (DGEBA), triglycidyl p-amino phenol (TGAP) and tetraglycidyl diamino diphenylmethane (TGDDM) were mixed with an octadecyl ammonium ion modified organoclay and cured with diethyltoluene diamine (DETDA). The techniques of dynamic mechanical thermal analysis (DMTA), chemorheology and differential scanning calorimetry (DSC) were applied to investigate gelation and vitrification behavior, as well as catalytic effects of the clay on resin cure. While the formation of layered silicate nanocomposite based on the bifunctional DGEBA resin has been previously investigated to some extent, this paper represents the first detailed study of the cure behavior of different high performance, epoxy nanocomposite systems.
Resumo:
The yield behaviour of a series of melt-mixed polyethylene-modified montmorillonite nanocomposites has been studied as a function of temperature and strain rate and compared to the behaviour of the base polymer. The processing conditions used gave an intercalated structure as assessed by X-ray diffraction. Although there was a modest improvement in stiffness with clay content, the yield behaviour was insensitive to the addition of the clay. Both the base polymer and the nanocomposites showed double yield points. These were analysed as activated rate processes, with the activation energies consistent with the low strain yield point being associated with the alpha(2) molecular relaxation and the higher strain yield point with W axis slip. (C) 2003 Society of Chemical Industry.
Resumo:
In this article, we investigate the parameters used in the MOCVD growth of GaAsN epilayers on GaAs substrates and some of their microstructures and optical properties. The N incorporation was found to mainly depend on the growth temperature and the fractional 1,1-dimethylhydrazine molar flow. A thin highly strained interface layer was observed between GaAsN and GaAs, which, contrary to previously published results, was not N enriched. The low-temperature (10 K) photoluminescence spectra were composed of several emissions that we attribute to a combination of interband transition and transitions involving localized defect states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements K Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry - the cause of the concern. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We investigate the emission of multimodal polarized light from light emitting devices due to spin-aligned carrier injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as nonradiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g factor and magnetic field affect the degree of polarization of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring the degree of spin polarization of carrier injection into nonmagnetic semicondutors.
Resumo:
Layered systems show anisotropic transport properties. The interlayer conductivity shows a general temperature dependence for a wide class of materials. This can be understood if conduction occurs in two different channels activated at different temperatures. We show that the characteristic temperature dependence can be explained using a polaron model for the transport. The results show an intuitive interpretation in terms of coherent and incoherent quasi-particles within the layers. Further, we extract results for the magnetoresistance, thermopower, spectral function and optical conductivity for the model and discuss application to experiments.
Resumo:
We report kinetic molecular sieving of hydrogen and deuterium in zeolite rho at low temperatures, using atomistic molecular dynamics simulations incorporating quantum effects via the Feynman-Hibbs approach. We find that diffusivities of confined molecules decrease when quantum effects are considered, in contrast with bulk fluids which show an increase. Indeed, at low temperatures, a reverse kinetic sieving effect is demonstrated in which the heavier isotope, deuterium, diffuses faster than hydrogen. At 65 K, the flux selectivity is as high as 46, indicating a good potential for isotope separation.
Resumo:
An ultrasonic thermometer has been developed for high temperature measurement over a wide temperature range. It is particularly suitable for use in measuring nuclear fuel rod centerline temperatures in advanced liquid metal and high flux nuclear reactors. The thermometer which was designed to determine fuel temperature up to the fuel melting point, utilizes the temperature dependence of the ultrasonic propagation velocity (related to the elastic modulus} in a thin rod sensor as the temperature transducing mechanism. A pulse excitation technique has been used, where the mechanical resonator at the remote end of the acoustic·line is madto vibrate. Its natural frequency is proportional to the ultrasonic velocity in the material. This is measured by the electronic instrumentation and enables a frequency temperature or period-temperature calibration to be obtained. A completely digital automatic instrument has been designed, constructed and tested to track the resonance frequency of the temperature sensors. It operates smoothly over a frequency range of about 30%, more than the maximum working range of most probe materials. The control uses the basic property of a resonator that the stored energy decays exponentially at the natural frequency of the resonator.The operation of the electronic system is based on a digital multichannel transmitter that is capable of operating with a predefined number of cycles in the burst. this overcomes a basic defect in the previous deslgn where the analogue time-delayed circuits failed to hold synchronization and hence automatic control could be lost. Development of a particular type of temperature probe, that is small enough to fit into a standard 2 mm reactor tube has made the ultrasonic thermometer a practicable device for measuring fuel temperature. The bulkiness of previous probes has been overcome, the new design consists of a tuning fork, integral with a 1mm line, while maintaining a frequency of no more than 100 kHz. A magnetostrictive rod, acoustically matched to the probe is used to launch and receive the acoustic oscillations. This requires a magnetic bias and the previously used bulky magnets have been replaced by a direct current coil. The probe is supported by terminating the launcher with a short heavy isolating rod which can be secured to the reactor structure. This support, the bias and launching coil and the launcher are made up into a single compact unit. On the material side an extensive study of a wide range of refractory materials identified molybdenum, iridium, rhenium and tungsten as satisfactory for a number of applications but mostly exhibiting to some degree a calibration drift with thermal cycling. When attention was directed to ceramic materials, Sapphire (single crystal alumina) was found to have numerous advantages, particularly in respect of stability of calibration which remained with ±2°C after many cycles to 1800oC. Tungsten and thoriated tungsten (W - 2% Tho2) were also found to be quite satisfactory to 1600oC, the specification for a Euratom application.
Resumo:
A homologous series of ultra-violet stabilisers containing 2-hydroxybenzophenone (HBP) moiety as a uv absorbing chromophore with varying alkyl chain lengths and sizes were prepared by known chemical synthesis. The strong absorbance of the HBP chromophore was utilized to evaluate the concentration of these stabilisers in low density polyethylene films and concentration of these stabilisers in low density polyethylene films and in relevant solvents by ultra-violet/visible spectroscopy. Intrinsic diffusion coefficients, equilibrium solubilities, volatilities from LDPE films and volatility of pure stabilisers were studied over a temperature range of 5-100oC. The effects of structure, molecular weight and temperature on the above parameters were investigated and the results were analysed on the basis of theoretical models published in the literature. It has been found that an increase in alkyl chain lengths does not change the diffusion coefficients to a significant level, while attachment of polar or branched alkyl groups change their value considerably. An Arrhenius type of relationship for the temperature dependence of diffusion coefficients seems to be valid only for a narrow temperature range, and therefore extrapolation of data from one temperature to another leads to a considerable error. The evidence showed that increase in additive solubility in the polymer is favoured by lower heat of fusions and melting points of additives. This implies the validity of simple regular solution theory to provide an adequate basis for understanding the solubility of additives in polymers The volubility of stabilisers from low density polyethylene films showed that of an additive from a polymer can be expressed in terms of a first-order kinetic equation. In addition the rate of loss of stabilisers was discussed in relation to its diffusion, solubility and volatility and found that all these factors may contribute to the additive loss, although one may be a rate determining factor. Stabiliser migration from LDPE into various solvents and food simulants was studied at temperatures 5, 23, 40 and 70oC; from the plots of rate of migration versus square root time, characteristic diffusion coefficients were obtained by using the solution of Fick's diffusion equations. It was shown that the rate of migration depends primarily on partition coefficients between solvent and the polymer of the additive and also on the swelling action of the contracting media. Characteristic diffusion coefficients were found to approach to intrinsic values in non swelling solvents, whereas in the case of highly swollen polymer samples, the former may be orders of magnitude greater than the latter.
Resumo:
Poorly water-soluble drugs show an increase in solubility in the presence of cyclodextrins (CyD) due to the formation of a water-soluble complex between the drug and dissolved CyD. This study investigated the interactions of -Cyd and hydroxypropyl--CyD (HP--CyD, M.S. = 0.6) with antimicrobial agents of limited solubility in an attempt to increase their microbiological efficacy. The agents studied were chlorhexidine dihydrochloride (CHX), p-hydroxybenzoic acid esters (methyl, ethyl, proply and butyl) and triclosan. The interactions between the antimicrobials and CyDs were studied in solution and solid phases. Phase solubility studied revealed an enhancement in the aqueous drug solubility in the presence of the CyD and also gave an indication of the complex stability constant (Ks). The temperature-dependence of the stability constant of the complex was modelled by the van't Hoff plot which yielded the thermodynamic parameters for complexation. Further confirmation of the inclusion of the antimicrobials within the cavity of the CyDs in aqueous solution was obtained from proton magnetic resonance and ultraviolet absorption spectroscopies. The former method indicated that the chlorophenyl moiety of the CHX was included within the -CyD cavity and the stoichiometry of the complex formed was 1:1. The solid-phase complexes were prepared by freeze-drying. The inclusion complex of triclosan with HP--CyD was obtained from aqueous solution with the addition of ammonia. Evidence to confirm complex formation was obtained from DSC, IR and X-ray powder diffraction studies. Dissolution studies of the solid inclusion complexes using the dispersed powder technique illustrated their superior solubilities as compared to the equimolar physical mix of the guest and CyD. It was shown that these solutions of the complex were supersaturated with respect to the free guest. This was further demonstrated by diffusion studies which showed the flux of free drug from donor solutions of the antimicrobial-CyD complex to be significantly greater than the flux from donor suspensions of drug alone.
Resumo:
Films of amorphous silicon (a-Si) were prepared by r.f. sputtering in a Ne plasma without the addition of hydrogen or a halogen. The d.c. dark electrical conductivity, he optical gap and the photoconductivity of the films were investigated for a range of preparation conditions, the sputtering gas pressure, P, the target-substrate spacing, d, the self-bias voltage, Vsb, on the target and the substrate temperature, Ts. The dependence of the electrical and optical properties on these conditions showed that various combinations of P, d and Vsb, at a constant Ts, giving the same product (Pd/V sb) result in films with similar properties, provided that P, d and Vsb remain vithin a certain range. Variation of Pd/Vsb between about 0.2 and 0.8 rrTorr.cm!V varied the dark conductivity over about 4 orders of magnitude, the optical gap by 0.5 eV and the photoconductivity over 4-5 orders of magnitude. This is attributed to controlling the density-of-states distribution in the mobility gap. The temperature-dependence of photoconductivity and the photoresponse of undoped films are in support of this conclusion. Films prepared at relatively high (Pd/Vsb) values and Ts=300 ºc: exhibited low dark-conductivity and high thermal activation energy, optical gap and photoresponse, characteristic properties of a 'low density-of-states material. P-type doping with group-Ill elements (Al, B and Ga) by sputtering from a composite target or from a predoped target (B-.doped) was investigated. The systematic variation of room-temperature conductivity over many orders of magnitude and a Fermi-level shift of about 0.7 eV towards the valence-band edge suggest that substitutional doping had taken place. The effects of preparation conditions on doping efficiency were also investigated. The post-deposition annealing of undoped and doped films were studied for a temperature range from 250 ºC to 470 ºC. It was shown that annealing enhanced the doping efficiency considerably, although it had little effect on the basic material (a-Si) prepared at the optimum conditions (Pd/Vsb=0.8 mTorr.cm/V and Ts=300 $ºC). Preliminary experiments on devices imply potential applications of the present material, such as p-n and MS junctions.
Resumo:
Fully dense graphene nanosheet(GNS)/Al2O3 composites with homogeneously distributed GNSs of thicknesses ranging from 2.5 to 20 nm have been fabricated from ball milled expanded graphite and Al2O3 by spark plasma sintering. The percolation threshold of electrical conductivity of the as-prepared GNS/Al2O3 composites is around 3 vol.%, and this new composite outperforms most of carbon nanotube/Al2O3 composites in electrical conductivity. The temperature dependence of electrical conductivity indicated that the as-prepared composites behaved as a semimetal in a temperature range from 2 to 300 K.