1000 resultados para Temperatura atmosfèrica
Resumo:
The study was conducted to evaluate the efficacy of herbicides in desiccation Raphanus raphanistrum (wild radish) in different application times and their effects on weed seed germination. The experimental had a randomized block design with three replications. The herbicides used were: glyphosate (360; 720; and 1080 g ha(-1)), 2,4-D (335; 670; and 1005 g ha(-1)), glyphosate + 2,4-D (360 + 335; 720 + 670; and 1080 + 1005 g ha(-1)). Spraying was conducted at three different times: 1st season (full bloom) - at 62 days after emergence (DAE), 2nd season (beginning of pod formation) - at 92 DAE and 3rd season (end of pod formation) - at 108 DAE. At 14, 21, 28, 35, and 42 days after application (DAA), the desiccation was evaluated visually, and 42 DAA dry mass of shoots and seeds of the 2nd and 3rd times were collected for the test of germination. All chemical treatments tested were effective in controlling the plants of wild radish in the 1st and 2nd times, but in the 3rd time doses of 2,4-D applied singly were not effective and only the highest dose of glyphosate applied singly or in mixture provided a total plant control. In terms of percentage, the reduction in dry matter of plants was higher with the application of larger doses of chemical treatments. The herbicides affected the germination of seeds of wild radish, and the herbicide 2,4-D provided greater reduction in germination in the 2nd and 3rd seasons.
Resumo:
The work is guided by the detailing of the Itajaí river basin, SC, rainfall dynamics at the annual, seasonal and monthly levels, allowing us to identify different responses that each location gives to the regional atmospheric circulation, particularly the rainfall. In this sense, we are aiming at approaching the concept of rhythm, which must be obtained at the daily level. The analysis at different climate scales was possible through isohyetal maps, trend lines, and Schroeder pluviographs. Moreover, we established the flow rate of the air masses by means of the Venn diagram. This data made it possible to assess the behavior of rains on that site and the reason why it is the stage of major flooding, as occurred in November 2008. The relatively mountainous topography combined with the frequent invasions of the Atlantic Polar Front, which often stop over the region, generate events of that magnitude, with high volumes accumulated in short periods of time. Such extreme events reinforce the idea of the search for the succession of types of weather to the detriment of averages that tend to abstract the reality
Resumo:
Nos últimos anos, têm se notado a grande preocupação com relação às condições climáticas do planeta e suas implicações. As discussões sobre as mudanças climáticas têm se tornado cada vez mais relevantes à medida que as adversidades climáticas têm implicações diretas na sociedade. Neste contexto, o objetivo deste trabalho foi identificar e avaliar episódios atmosféricos severos ocorridos no Estado de São Paulo no ano de 2005, elaborando posteriormente o estudo de caso do tornado ocorrido na cidade de Indaiatuba (SP). No levantamento sobre o evento atmosférico levou-se em conta a condição atmosférica que o originaram, além dos impactos ambientais e sócio-econômicos do fenômeno na sua região de abrangência. Para isso foram realizados levantamentos bibliográficos mais completos possíveis sobre o assunto, utilizando revistas credenciadas em âmbito nacional ou internacional. Logo após esta etapa foram coletados os dados de estações meteorológicas e dados atmosféricos como vento, temperatura, pressão disponibilizados pelo (NCEP) National Centers for Environmental Prediction. Estes dados atmosféricos disponibilizados pelo (NCEP) foram avaliados e analisados para a caracterização do episódio atmosférico e o cruzamento de informações por meio dos (SIGs) Sistema de Informação Geográfica, referentes à dinâmica atmosférica e topografia. A interpretação de todos os dados gerados relacionados e suas implicações no contexto ambiental e sócio-econômico está organizada em forma de uma síntese na redação final.
Resumo:
It is known that the urban environment modifies the energy balance between the surface and the atmosphere, causing changes in temperature, relative humidity, among other things, opening the way for studies aimed at urban climatology. Based on the theme of urban climate, this research focuses on the city of Assis, located west of São Paulo. The generation of urban climate is a result of various factors, among which stand out: the use and different land use, the thermodynamic properties of buildings, number of buildings in the urban, socioeconomic activities, etc.. In general, this increases the temperature and reducing relative humidity, providing thermal discomfort. The rural environment is used for comparison studies to this theme by presenting different characteristics in relation to the structure, morphology and urban functionality. The main objective of this study is to determine the characteristics of temperature and humidity environments with the habits and occupations of the different soils in winter, at night, one inserted into the urban fabric of Assis and the other in the rural environment, to verify for evidence of changes in climatic elements because of urbanization. To collect the data will be used mini automatic weather stations that record data on temperature and humidity. For analysis of the results will be made between the data obtained in the city and the countryside, developing graphics application using Excel to tabulate the data. It was found that there were differences in the thermo-hygrometric data collection points, showing a specific urban climate in the city of Assis
Resumo:
The present work investigates solid waste temperature behavior in different depths in two cells in the Rio Claro-SP city’s sanitary landfill. One of the cells is in operation with waste disposal beginning about one year ago. The other one is located in an closed area and contain waste disposed from five to seven years before. Measures were also made in an area that have no disposed waste in order to collect reference values. The data were obtained every fifteen days. The temperature results shows higher values in the operating cell, with maximum 38,1 °C in a depth of 4,0 m. In the closed cell the highest values were 36,3 °C in a depth of 8,5 m. The highest temperature values were obtained in the operating cell due to wider substract availability that indicates a more intense biological degradation activity. With three meters depth, the temperature results were 36,6 °C in the operating cell, 33,8 °C in the closed cell and 24,5 °C in the reference area. Therefore the temperature can be used as a biological activity indicator in sanitary landfills, supporting biogas studies
Resumo:
The climate is one of the main elements of the natural environment that governs the life of man. Specific conditions of temperature, humidity, light, wind and precipitation have direct influence on physiological conditions that man needs to survive and more than that, besides the influence on human and animal physiology, the climatic elements are also responsible for a significant portion of economic activities such as industry, agriculture, commerce, transportation, and others. Therefore, any change in weather patterns has great impact on daily activities, and even more in urban sites, where the most of population is concentrated nowadays. Based on this discussion and concerned in understand the atmospheric structure, this monograph intends to analyze the pattern of atmospheric and temperature element in seven cities of small and medium size located in the state of São Paulo countryside... (Complete abstract click electronic access below)
Resumo:
This research sought to understand the temporal and spatial distribution of rainfall and its effect on water dynamics on a regional basis, taking into account the pace of climate paradigm. The study area covers the entire river basin of the Itajai and its surroundings understood, roughly, between parallels 26° and 28° south latitude and 48° and 50° 30' west longitude, place of constant heavy rains and floods. In this region, pluviometric and fluviometric data were obtained, the variables of rainfall and water flow, which were compiled and analyzed using spreadsheets in order to get the series with more homogeneous data as possible for good analysis, the period between 1953 and 1982. This historical period has passed in principle by an analysis which sought to highlight the variability and distribution of rainfall and water flow in the basin-level annual, techniques which were used that allowed the choice of standard year representative (rainy, dry , usual) series. These obtained years (1957, 1968 and 1971, respectively) underwent a detailed analysis on the monthly level, providing good interpretation of the dynamic behavior of rain associated with dynamic water flow for these representative years
Resumo:
In this work concepts of flammability limits of anhydrous and hydrated ethanol to pressures below atmospheric, using the Dalton model for gaseous mixtures. Theoretical and experimental methods for determining the boundaries and the influence of parameters such as concentration, temperature and pressure were introduced. Analyzes from partial pressures of fuel vapor and correlations with temperature and total pressure were made. Finally presents an overview of aviation fuels, their requisites and trends in the use of biofuels in commercial aviation industry
Resumo:
This work research and analyses the formulations and concepts of heat and temperature presented in Physics textbooks. These issues are deemed important because students often have difficulties differentiating and understanding such concepts, which compromises their education. The goal is to show that well-established relationships between Physical quantities such as energy, pressure, heat and temperature, even in different theories of Classical and Quantum Physics are not enough to define either temperature or heat. It also presents simple experiments that complement the teaching and learning of these concepts
Resumo:
Non-intrusive methods of diagnosis, such as spectral analysis of the radiation emitted by the system, have been used as a viable alternative for determining the temperature of combustion systems. Among them, the determination of temperature by natural emission spectroscopy has the advantage of requiring relatively simple experimental devices. Once Chemiluminescent species are formed directly in the excited state, the collection and recording of radiation emission spectrum is enough to determine the temperature (CARINHANA, 2008). In this study we used the process of making direct comparisons between the experimental spectra obtained in the laboratory from the plasma of alcohol, and the theoretical spectra plotted from a computer program developed at the IEAv. The objective was to establish a fast and reliable method to measure the rotational temperature of the radical C2*. The results showed that the temperature of the plasma, which in turn can be taken as the rotational temperature of the system, is proportional to the pressure. The temperature values ranged from ca. 2300 ~ 2500 K at a pressure of 19 mmHg to 3100 ~ 3500 K for the pressure of 46 mmHg. The temperature values are somewhat smaller when we consider the theoretical spectrum as a Lorentzian curve. The overlap of the spectra was better when using the profile curve, but still were not exactly superimposed. The solution to improve the overlap of the theoretical with the experimental spectra is the use of a curve that has the convolution of two profiles analyzed: Lorentzian and Gaussian. This curve is called the Voigt profile, which will also be implemented by programmers and studied in a next work
Resumo:
In a combustion process involving fossil fuels, there is the formation of species Chemiluminescent, especially CH*, C2* and OH*, whose spontaneous emission can be used as a diagnostic tool. In the present work, mapping and determination of the rotational temperature of the species CH* produced in flames on a burner fueled by Liquefied Petroleum Gas (LPG) was carried out. This study is part of a project involving the characterization of supersonic combustion in scramjets engines, whose study has been conducted in the hypersonic shock tunnel IEAv laboratories. The technique used was the natural emission spectroscopy, which has as main advantage of being non-intrusive. The rotational temperature determination was made using the Boltzmann method, whose principle is to relate the emission intensity of the species to the temperature by means of spectroscopic constants established.The temperature values were determined from the analysis of electronic bands AX and BX of the radical CH*. In order to confirm the results of flame temperatures obtained by the natural emission technique, was also used the technique of line reversal sodium. The results of both techniques showed that the temperature of the flames investigated is about 2500K a 2700K
Resumo:
The welding process in industrial piping is still the most effective way to ensure the durability and quality of the wide range of industrial process, although because of the high demand for energy and quality of the produced products, the piping has been constantly tested for high pressure applications and still high temperature. The welding method analyzed is the TIG (Tungsten Inert Gas) welding or GTAW (Gas-Shielded Tungsten Arc Welding), which ones have as principal feature the utilization of a not consumable tungsten electrode in the torch extremity , in this process is necessary a protective atmosphere of inert gas. The welding TIG advantage is the obtaining of a welded seam clean and with quality for not has slag after the welding. This work has as objective show the variability in the carbon steel piping welding parameters and by the tests in four proof bodies will be shown the influence of the variation of the welding methods in a welded seam. The tests will vary since the piece to be welded preparation, till penetrating liquid tests, welding macrography, welding x-ray and traction tests. Even been a clean and with quality welding is necessary a final inspection in the seam welded looking for defects almost inevitable resulted of the welded process, the obtained results have the objective of indicate and minimize the defects to ensure quality and durability of the welded seam
Resumo:
After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)
Resumo:
The deslignification with oxygen, also denominated pre-O2, consists in a whitening stage, which consists of accomplishing an oxidation of the lignin, and remove it with the alkali, providing a larger earnings in the bleaching of the pulp. The pre-O2 is a process already very established, where a significant part of the cellulose of whitened short fiber produced nowadays suffers deslignification for this method. The conditions of work of this stage contemplate directly in the results of the deslignification level, in the physical, optical and mechanics properties of the pulp, and consequently of the paper, because this is important to know their effects fully. The main variables related to the control of this process are respectively: pressure and oxygen load, alkaline load, consistence, time and temperature, being this last variable was the study focus in this work. The objective of the work was to analyze the effect of the variation of the temperature in the oxygen whitening along every bleaching process of the pulp, refine and in the optical, physics and mechanics properties of the paper. The development of the work was based in four temperature levels (90, 95, 100 and 105°C) combined to two whitening sequences (OD0(E+P)D1P and OAHTD0(E+P)D1P). The results obtained in the oxygen deslignification stage indicated that the elevation of the temperature contemplated in increases of the whiteness, deslignification efficiency and in the viscosity loss allied to the reduction of the selectivity of the process. In the remaining of the whitening, the sequence that included the acid hydrolysis presented values slightly inferior of whiteness, kappa number, viscosity and yield in relation to the other sequence when compared with the samples of same temperatures. Already the physical tests showed that the sequence with acid stage amplifies the values of capillary... (Complete abstract click electronic access below)
Resumo:
This paper proposes an analysis of two major polluting elements of the atmosphere of São Paulo city, carbon monoxide (CO) and sulfur dioxide (SO2). This study was performed through analysis of data on the quality of air, by means of published reports and records obtained by experiment using measuring rate monitor for CO2. Atmospheric data were collected and sorted. From this work it was possible to identify the concentration of carbon dioxide in the center of São Paulo on September 14, 2012 using the infrared gas analyzer (IRGA). From the ratios of carbon monoxide and sulfur dioxide spatially analyzed could identify major emitters by comparing records of pollutants and their origin. The analysis makes it possible to map the intensity of air pollution in urban areas, identifying the polluting elements, their issuers and thereby contributes to the current understanding of atmospheric features, bringing a geographical spatial analysis of air pollutants in São Paulo, contributing to awareness of vulnerabilities, enabling a useful tool for planning and maintenance of the urban environment related public policies