989 resultados para Tauberian Constants
Resumo:
The kinetics of facilitated ion-transfer (FIT) reactions at high driving force across the water/1,2-dichloroethane (W/DCE) interface is investigated by scanning electrochemical microscopy (SECM). The transfers of lithium and sodium ions facilitated by dibenzo-18-crown-6 (DB18C6) across the polarized W/DCE interface are chosen as model systems because they have the largest potential range that can be controlled externally. By selecting the appropriate ratios of the reactant concentrations (Kr c(M)+/c(DB18C6)) and using nanopipets as the SECM tips, we obtained a series of rate constants (k(f)) at various driving forces (Delta(O)(W) phi(ML+)(0') - Es, Delta(O)(W) phi(ML+)(0') is the formal potential of facilitated ion transfer and Es is the potential applied externally at the substrate interface) based on a three-electrode system. The FIT rate constants k(f) are found to be dependent upon the driving force. When the driving force is low, the dependence of 1n k(f) on the driving force is linear with a transfer coefficient of about 0.3. It follows the classical Butler-Volmer theory and then reaches a maximum before it decreases again when we further increase the driving forces. This indicates that there exists an inverted region, and these behaviors have been explained by Marcus theory.
Resumo:
The 24-mer DNA aptamer of Harada and Frankel ( Harada, K.; Frankel, A. D. EMBO J. 1995, 14, 5798-5811) that binds L-argininamide (L-Arm) was studied by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). This DNA folds into a stem and loop such that the loop is able to engulf L-Arm. As controls, two derivatives of the same base composition, one with the same stem but a scrambled loop and the other with no ability to form a secondary structure, were studied. The two DNAs that could fold into stem-loop structures showed a more negatively charged distribution of ions than the linear control. This tendency was preserved in the presence of ligand; complexes expected to have more secondary structure had ions with more negative charges. Distinct species corresponding to no, one, and two bound L-Arm molecules were observed for each DNA. The fractional peak intensities were fit to a straightforward binding model and binding constants were obtained. Thus, ESI-FTMS can provide both qualitative and quantitative data regarding the structure of DNA and its interactions with noncovalent ligands.
Resumo:
Fabrication of ultrathin polymer composite films with low dielectric constants has been demonstrated. Octa( aminophenyl) silsesquioxane (OAPS) was synthesized and assembled with poly( acrylic acid) (PAA) and poly( styrene sulfonate) (PSS) via a layer-by-layer electrostatic self-assembly technique to yield nanoporous ultrathin films. The OAPS was soluble in water at pH 3 or lower, and suitable pH conditions for the OAPS/PAA and OAPS/PSS assemblies were determined. The multilayer formation process was studied by contact angle analysis, X-ray photoelectron spectroscopy, atomic force microscopy, quartz crystal microgravimetry, UV-vis spectroscopy, and ellipsometry. The multilayer growth was found to be steady and uniform, and the analysis of the film surface revealed a rough topography due to OAPS aggregates. The incorporation of porous OAPS molecules into the thin films significantly lowered their dielectric constants. The OAPS/PAA multilayer thin film thus prepared exhibited a dielectric constant of 2.06 compared to 2.58 for pure PAA film. The OAPS/PAA multilayer film was heated to effect cross-linking between the OAPS and the PAA layers, and the transformation was verified by reflection-absorption Fourier transform infrared spectroscopy.
Resumo:
Sequential deprotonations of meso-(p-hydroxyphenyl)porphyrins (p-OHTPPH2) in DMF + H2O (V/V = 1:1) mixture have been verified to result in the appearance of hyperporphyrin spectra. However, when the deprotonations of these p-OHTPPH2 are carried out in DMF, the spectral changes differ considerably from those in the mixture mentioned above. At low [OH-], the optical spectra in the visible region are still considered to have characteristics of hyperporphyrin spectra. Further deprotonation at much higher basicity makes the optical spectra form three-banded spectra similar to those in the acidic solution. To clarify the molecular origins of these changes, UV-vis, resonance Raman (RR), proton nuclear magnetic resonance (H-1 NMR) experiments are carried out. Our data give evidence that p-OHTPPH2 in DMF can be further deprotonated of pyrrolic-H by higher concentrated NaOH, due to an aprotic medium like DMF effectively weakening the basicity of the porphyrin relative to that of the NaOH, and coordinates with two sodium ions (except the sodium ions that interact with the peripherial phenoxide anions) to form the sodium complexes of p-OHTPPH2 (Na2P, to lay a strong emphasis on the sodium ions that coordinate with the central nitrogen atom), which can be regarded as the porphyrin anions being perturbed by the sodium cations due to their highly ionic character.
Resumo:
First-principle calculations are performed to investigate the structural, elastic, and electronic properties of ReB2 and WB2. The calculated equilibrium structural parameters of ReB2 are consistent with the available experimental data. The calculations indicate that WB2 in the P6(3)/mmc space group is more energetically stable under the ambient condition than in the P6/mmm. Based on the calculated bulk modulus, shear modulus of polycrystalline aggregate, ReB2 and WB2 can be regarded as potential candidates of ultra-incompressible and hard materials. Furthermore, the elastic anisotropy is discussed by investigating the elastic stiffness constants. Density of states and electron density analysis unravel the covalent bonding between the transition metal atoms and the boron atoms as the driving force of the high bulk modulus and high shear modulus as well as small Poisson's ratio.
Resumo:
Synergistic extraction of trivalent rare earths (RE=Sc, Y, La, Gd, Yb) from hydrochloride medium using mixture of bis(2,4,4-trimethylpentyl)phosphinic acid (HL, Cyanex272) and Sec-nonylphenoxy acetic acid (HA, CA-100) in n-heptane has been studied. The synergistic enhancement coefficients were observed for La (1.30), Gd (1.97), Y (3.59), Yb (8.21) and Sc (14.41). The results indicated yttrium was extracted into n-heptane as YH(5)A(4)L(4) mixed species instead of Y(HL2)(3), Y(OH)(2)A(HA)(3) which were extracted by Cyanex272 and CA-100, respectively. A cation exchange mechanism was proposed and further clarified by IR spectra. The equilibrium constants, formation constants and thermodynamic functions such as Delta G, Delta H and Delta S were determined. The Cyanex272 + CA-100 system not only enhanced the extraction efficiency of RE but also improved the selectivities significantly. The mutual separation factors of these ions suggested the mixture system would be of practical value in extraction and separation of rare earths.
Resumo:
A new compound Ce(6-x)Ln(x)MoO(15-delta) has been synthesized by wet-chemistry method. Their crystal structure and oxide ionic conductivity were characterized by powder X-ray diffraction, Raman, IR spectrum and A.C. impedance technique. The XRD results showed that Ce6MO15-delta, Ce(5)LnMoO(15-delta) have cubic symmetry with Fm3m space group. The refined lattice parameters showed that their lattice constants decrease with the decrease of the ionic radius of Ln(3+). The electrochemical measurements showed that the ionic conductivity of resulting oxides Ce(6-x)Ln(x)MoO(15-delta) have an enhance, which may be a kind of promising material for SOFCs.
Resumo:
The yttrium(III) extraction kinetics and mechanism with bis-(2,4,4-trimethyl-pentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The data has been analyzed in terms of pseudo-first order constants. Studies on the effects of stirring rate, temperature, acidity in aqueous phase, and extractant concentration on the extraction rate show that the extraction regime is dependent on the extraction conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of Cyanex 272 at heptane-water interfaces has made the interface the most probable location for the chemical reactions. The forward, reverse rate equations and extraction rate constant for the yttrium extraction with Cyanex 272 have been obtained under the experimental conditions. The rate-determining step has been also predicted from interfacial reaction models. The predictions have been found to be in good agreement with the rate equations obtained from experimental data, confirming the basic assumption that the chemical reaction is located at the liquid-liquid interface.
Resumo:
The interfacial tension is measured for Cyanex 302 in heptane and adsorption parameters are calculated according to Gibbs equation and Szyskowski isotherm. The results indicate that Cyanex 302 has a high interfacial activity, allowing easy extraction reaction to take place at the liquid-liquid interface. The extraction kinetics of yttrium(III) with Cyanex 302 in heptane are investigated by a constant interfacial cell with laminar flow. The effects of stirring rate, temperature and specific interfacial area on the extraction rate are discussed. The results suggest that the extraction kinetics is a mixed regime with film diffusion and an aqueous one-step chemical reaction proposed to be the rate-controlling step. Assuming the mass transfer process can be formally treated as a pseudo-first-order reversible reaction with respect to the metal cation, the rate equation for the extraction reaction of yttrium(III) with Cyanex 302 at pH <5 is obtained as follows:R-f = 10(-7.85)[Y(OH)(2)(+)]((a))[H(2)A(2)]((o))(1.00)[H+]((a))(-1.00)Diffusion parameters and rate constants are calculated through approximate solutions of the flux equation.
Resumo:
The synergistic extraction of rare earths (La, Nd, Gd, Y and Yb) with a mixture of 2-ethylhexyl 2-ethylhexylphosphonate (EHEHPA) (HA) and trialkylphosphine oxide (Cyanex 923) (B) from a hydrochloride medium was investigated. The mixed system significantly enhances the extraction efficiency for lighter lanthanides and the synergistic enhancement coefficients for La (4.52), Nd (3.35), Gd (2.08), Y (1.31) and Yb (1.08) decrease with decreasing ionic radius of the rare earths. The extraction equilibrium of La, Nd and Gd indicate that La and Nd were extracted as MA(3)(.)B, whereas Gd was extracted as Gd(OH)A(2)(HA)(2)B-.. The equilibrium constants, thermodynamic functions such as Delta G, Delta H and Delta S and formation constants of the extracted species were determined. The stripping properties were also studied.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP, HA) and di-(2ethylhexyl)-2-ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE (III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A(2).B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change Delta G (-17.06kJmol(-1)), enthalpy change Delta H (-35.08kjmol(-1)) and entropy change Delta S (-60.47JK(-1)mol(-1)) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements.
Resumo:
Studies of the extraction kinetics of cerium(IV) into n-heptane solutions of di(2-ethylhexyl)-2-ethylhexyl phosphonate DEHEHP from HNO3-HF solutions have been carried out using a constant interfacial cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The effects of the stirring rate, specific interfacial area, and temperature on the extraction rate showed that the most probable reaction zone is in the aqueous homogeneous phase. The results were compared with those of the system without HF. It was concluded that the presence of HF decreases the extraction rate of cerium. The addition of HF increases the activation energy for the forward reaction from 21.2 to 55.3 kJ/mol and for the reverse process from 57.9 to 79.0 kJ/mol. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the corresponding rate equation was deduced as follows:-d[Ce]/dt = k[Ce] center dot B-0.62 center dot HF-0.58 center dot [NO3-](0.57)
Resumo:
The extraction of trivalent rare earths ( RE) from nitrate solutions with di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) and synergistic extraction combined with 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPMBP, HA) were investigated. The extraction distribution ratios demonstrate a distinct "tetra effect," and Y lies between Tb and Dy when DEHEHP is used as a single extractant for RE. According to the corresponding separation factors (SF12) for adjacent pairs of rare earths, it could be concluded that DEHEHP could be employed for the separation of La from the other rare earths, and Y from light rare earths. The present work has also found that mixtures of HPMBP and DEHEHP have an evident synergistic effect for RE(III). Taking Y( III) as an example, a possible synergistic extraction mechanism is proposed. The enhancement of extraction in the binary system can be explained due to the species Y(NO3) (.) A(2) (.) HA (.) B formed. The synergistic enhancement coefficients ( R), extraction constants, formation constants and thermodynamic functions of the reaction were calculated.
Resumo:
The stability constants and species distributions of complexes of two lanthanide ions, Eu (III) and Tb(III), with a macrocyclic ligand, 3,6, 9, 17 20, 23-hexaazo-29, 30-dihydroxy-13, 27-dimethyl-tricylco-[23,3,1,1(11,15)] triaconta-1 (28) 11,13,15 (30), 25 26-hexane (BDBPH), in 1: 1 and 2: 1 system, were determined potentiometrically in 50% ethanol solution, at 35.0 degrees C and I = 0.100 mol/L (KCl). The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH with high stability after the three protons of the ligand completely neutralized. At higher pH values, Eu(M) could not form hydroxo complexes with BDBPH, while Tb(III) could form hydroxo complexes in the types of M2L(OH) M2L(OH)(2) and M2L (OH)(2). The kinetic study on the hydrolysis reaction of his (4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system (2:1) was carried out in aqueous solution (pH 7.0 similar to 10.0) at 35 degrees C with I = 0.1000 mol/L (KCl). The second-order rate constant k(BNPP) (2.3 x 10(-3) (mol/L)(-1)center dot s(-1)) was determined. The dinuclear monohydroxo species, L-Tb-2-OH, is kinetically active species.
Resumo:
The extraction and stripping of ytterbium (III) from sulfuric acid medium using Cyanex 923 in heptane solution was investigated. The effects of extractant concentration, pH and sulfate ion as well as stripping agents, acidity and temperature on the extraction and stripping were studied. The equilibrium constants and thermodynamic parameters, such as Delta H (10.76 kJ(.)mol(-1)), Delta G (-79.26 kJ(.)mol(-1)) and Delta S (292.41 J(.)K(-1.)mol(-1)), were calculated. The extraction mechanism and the complex species extracted were determined by slope analysis and FrIR spectra. Furthermore, it was found that the extraction of Yb (III) from sulfuric acid medium by Cyanex 923 increased with pH, concentration of SO42-, HSO4-, and extractant concentration, and approximately a quantitative extraction of Yb (III) was achieved at an equilibrium pH near 3.0, and the extracted complex was YbSO4(HSO4)(.)2Cyanex923((o)).