927 resultados para Tariff on farm produce.
Resumo:
In broader catchment scale investigations, there is a need to understand and ultimately exploit the spatial variation of agricultural crops for an improved economic return. In many instances, this spatial variation is temporally unstable and may be different for various crop attributes and crop species. In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS ( a fresh weight measure of sucrose content in the cane) accumulated over a 12-year period. Such an arrangement of data can be expressed as a 3-way array where a farm x attribute x year matrix can be evaluated and interactions considered. Two multivariate techniques, the 3-way mixture method of clustering and the 3-mode principal component analysis, were employed to identify meaningful relationships between farms that performed similarly for both cane yield and CCS. In this context, farm has a spatial component and the aim of this analysis was to determine if systematic patterns in farm performance expressed by cane yield and CCS persisted over time. There was no spatial relationship between cane yield and CCS. However, the analysis revealed that the relationship between farms was remarkably stable from one year to the next for both attributes and there was some spatial aggregation of farm performance in parts of the mill area. This finding is important, since temporally consistent spatial variation may be exploited to improve regional production. Alternatively, the putative causes of the spatial variation may be explored to enhance the understanding of sugarcane production in the wet tropics of Australia.
Resumo:
This paper examines 'availability' and the input metrics of operational expenditure (OPEX) for wave energy projects and reports on a case study which assesses the impact of these inputs on project profit returns. Case study simulations modelled a 75 MW wave energy project at two locations; the west coast of Ireland and the north coast of Portugal. Access and availability with respect to weather windows at both locations are discussed and their impact on energy output and wave farm operations is quantified. The input metrics used to calculate OPEX of wave energy projects are defined as well as the impact of OPEX on project net present value (NPV) and internal rate of return (IRR). Results indicate that access and resultant availability factors have a significant impact on case study results by reducing energy output and correspondingly financial returns. Furthermore, the technology maturity level designated for a project also impacts on availability factors and consequently energy output and NPV. Case study profits proved to be very sensitive to annual OPEX, especially if overhaul and replacement costs were accounted for. As a result of the impact of 'availability' on project profit returns. Feed-in tariffs will need to be tailored to the location in question as well as the device technology maturity level, with case study simulations indicating that high FIT will be required to support early stage WEC projects. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study aims at exploring the potential impact of forest protection intervention on rural households’ private fuel tree planting in Chiro district of eastern Ethiopia. The study results revealed a robust and significant positive impact of the intervention on farmers’ decisions to produce private household energy by growing fuel trees on their farm. As participation in private fuel tree planting is not random, the study confronts a methodological issue in investigating the causal effect of forest protection intervention on rural farm households’ private fuel tree planting through non-parametric propensity score matching (PSM) method. The protection intervention on average has increased fuel tree planting by 503 (580.6%) compared to open access areas and indirectly contributed to slowing down the loss of biodiversity in the area. Land cover/use is a dynamic phenomenon that changes with time and space due to anthropogenic pressure and development. Forest cover and land use changes in Chiro District, Ethiopia over a period of 40 years was studied using remotely sensed data. Multi temporal satellite data of Landsat was used to map and monitor forest cover and land use changes occurred during three point of time of 1972,1986 and 2012. A pixel base supervised image classification was used to map land use land cover classes for maps of both time set. The result of change detection analysis revealed that the area has shown a remarkable land cover/land use changes in general and forest cover change in particular. Specifically, the dense forest cover land declined from 235 ha in 1972 to 51 ha in 1986. However, government interventions in forest protection in 1989 have slowed down the drastic change of dense forest cover loss around the protected area through reclaiming 1,300 hectares of deforested land through reforestation program up to 2012.
Resumo:
Shelf seas comprise approximately 7% of the world’s oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometrescale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.
Resumo:
Shelf seas comprise approximately 7% of the world’s oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometrescale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.
Resumo:
Most Australian banana production occurs on the north-eastern tropical coast between latitudes 15-18°S, and can experience summer cyclone activity. Damage from severe tropical cyclones has serious impact on banana-based livelihoods. The most significant impacts include immediate loss of production and income for several months, the region-wide synchronization of cropping and the expense of rehabilitating affected plantations. Severe tropical cyclones have directly affected the main production region twice in recent years Tropical Cyclone (TC) Larry (Category 4) in March 2006 and TC Yasi (Category 5) in February 2011. Based on TC Larry experiences, pre- and post-cyclone farm practices were developed to reduce these impacts in future cyclonic events. The main pre-cyclone farm practice focused on maintaining production units and an earlier return to fruit production by partially or completely removing the plant canopy to reduce wind resistance. Post-cyclone farm practices focused on managing the industry-wide crop synchronization using crop timing techniques to achieve a staggered return to cropping by scheduling production to provide continuous fruit supply. With TC Yasi in 2011, some banana producers implemented these practices, allowing them to examine their effectiveness in reducing cyclonic impacts. Additional research and development activities were conducted to refine our understanding of their effectiveness and improve their application for future cyclonic events. Based on these activities and farm-based observations, suggested practice-based management strategies can be developed to help reduce the impact of severe tropical cyclones in the future. Canopy removal maintained banana plants as productive units, and provided earlier but smaller bunches, generating earlier-than-expected income. Queensland producers expressed willingness to adopt canopy removal for future cyclone threats where appropriate, despite its labor-intensiveness. Mechanization would allow larger scale adoption. Implementing a staggered cropping program successfully achieved a consistent, continuous fruit supply after a cyclone impact. Both techniques should be applicable to other cyclone-prone regions.
Resumo:
Management of coconut ( Cocos nucifera ) lethal yellowing disease (CLYD), which has killed about eight million coconut trees in Mozambique, has proved challenging. The objective of this study was to investigate the impact of farming practices and related history, on the CLYD incidence in Mozambique. The methodology included a socioeconomic questionnaire to the households and direct observations on the palm farms. The collected data were analysed using logistic regression. Five out of 11 explanatory variables tested, namely farm age, availability of other palm species on the coconut farm, type of coconut varieties grown, root cut practices, and intercropping had a significant (P< 0.05) effect on CLYD incidence. Coconut farms <10 years had higher odds of higher disease incidence compared to the farms between 10 to 40 years old. The presence of other palm species in the coconut farms had two times higher odds of having higher disease incidence levels compared to farms without other palm species. Tall coconut varieties were likely to be more tolerant to CLYD compared to dwarf varieties. Coconut farms with some kind of intercropping had two times higher odds of having higher disease incidence levels compared to pure stands. The practice of cutting coconut roots had three times higher odds of having high disease incidence levels compared to non-practicing farms. Farm age, availability of other palm species on the coconut farm, type of coconut varieties grown, root cut practices and intercropping need to be considered for integrated CLYD management.
Resumo:
Presentation by Shannon Ferrell from his solar energy leasing webinar.
Resumo:
The objective of this study was to determine the dynamics and diversity of Escherichia coli populations in animal and environmental lines of a commercial farrow-to-finish pig farm in Spain along a full production cycle (July 2008 to July 2009), with special attention to antimicrobial resistance and the presence of integrons. In the animal line, a total of 256 isolates were collected from pregnant sows (10 samples and 20 isolates), 1-week-old piglets (20 samples and 40 isolates), unweaned piglets (20 samples and 38 isolates), growers (20 samples and 40 isolates), and the finishers' floor pen (6 samples and 118 isolates); from the underfloor pits and farm slurry tank environmental lines, 100 and 119 isolates, respectively, were collected. Our results showed that E. coli populations in the pig fecal microbiota and in the farm environment are highly dynamic and show high levels of diversity. These issues have been proven through DNA-based typing data (repetitive extragenic palindromic PCR [REP-PCR]) and phenotypic typing data (antimicrobial resistance profile comprising 19 antimicrobials). Clustering of the sampling groups based on their REP-PCR typing results showed that the spatial features (the line) had a stronger weight than the temporal features (sampling week) for the clustering of E. coli populations; this weight was less significant when clustering was performed based on resistotypes. Among animals, finishers harbored an E. coli population different from those of the remaining animal populations studied, considering REP-PCR fingerprints and resistotypes. This population, the most important from a public health perspective, demonstrated the lowest levels of antimicrobial resistance and integron presence.