965 resultados para TRANSFER CATALYTIC-SYSTEMS
Resumo:
MRI is an important tool for investigating breast cancer. Although recognized as the method of choice for screening highrisk patients, and for other indications the role of MRI for lesion characterization remains controversial. Recently some authors have advocated the use of morphologic and postcontrast features for this purpose. Quantitative breast MRI techniques have not been applied extensively in breast diseases. Magnetization transfer (MT) is a quantitative MR technique commonly used to investigate neurological diseases. In breast diseases the use of MT has been limited to improving visualization of areas of enhancement in postcontrast images. The purpose of this study was to evaluate the feasibility and utility of MT in discriminating benign from malignant breast lesions. Fifty-two lesions, Bl-RADS 4 and 5, from 49 patients, were prospectively evaluated using the MT ratio (MTR). Patients were divided into two groups: benign and malignant lesions. The MTR of fat, pectoralis major muscle, fibroglandular tissue, and breast lesions were calculated. A statistically significant difference was found between MTR from benign and malignant lesions (P < 0.001). Preliminary results suggest that MT can be used to evaluate breast lesions. Further studies are necessary to better define the utility and applicability of this technique.
Specification, refinement and verification of concurrent systems: an integration of Object-Z and CSP
Resumo:
Numerous studies have shown that it is possible to manipulate follicular and luteal dynamics, thereby eliminating the need for oestrus detection in embryo transfer (ET) programmes. Fixed-time ET (FTET) protocols are based on the use of gonadotrophin-releasing hormone (GnRH) and prostaglandin (PG) F or progesterone/progestogen (P4)-releasing devices and oestradiol. The FTET protocols increases the proportion of recipients transferred, and therefore pregnancy rates, compared with the use of PGF followed by ET 7 days after oestrus. Furthermore, the addition of equine chorionic gonadotrophin (eCG) to the P4 and oestradiol-based FTET protocols results in an even higher proportion of recipients transferred, and thus higher pregnancy rates. The beneficial effect of eCG treatment may be related to increased growth of the dominant follicle and increased plasma P4 concentrations during the subsequent luteal phase. In Bos taurus x Bos indicus recipients, pregnancy rates were positively correlated with the diameter of the corpus luteum (CL) and the number of CL at ET. When repeat-breeder Holstein cows were used as recipients, FTET protocols increased number of recipients transferred and pregnancy rates compared with the traditional PGF-based synchronisation protocols. In conclusion, the use of FTET protocols eliminates the need for the detection of oestrus and results in a greater proportion of recipients transferred and satisfactory pregnancy rates. Thus, FTET optimises the use of recipients, reducing labour and animal handling and facilitating the use of ET.
Resumo:
Nuclear-mitochondrial incompatibilities may be responsible for the development failure reported in embryos and fetuses produced by interspecies somatic cell nuclear transfer (iSCNT). Herein we performed xenooplasmic transfer (XOT) by introducing 10 to 15% of buffalo ooplasm into bovine zygotes to assess its effect on the persistence of buffalo mitochondrial DNA (mtDNA). Blastocyst rates were not compromised by XOT in comparison to both in vitro fertilized embryos and embryos produced by transfer of bovine ooplasm into bovine zygotes. Moreover, offspring were born after transfer of XOT embryos to recipient cows. Buffalo mtDNA introduced in zygotes was still present at the blastocyst stage (8.3 vs. 9.3%, p = 0.11), indicating unaltered heteroplasmy during early development. Nonetheless, no vestige of buffalo mtDNA was found in offspring, indicating a drift to homoplasmy during later stages of development. In conclusion, we show that the buffalo mtDNA introduced by XOT into a bovine zygote do not compromise embryo development. On the other hand, buffalo mtDNA was not inherited by offspring indicating a possible failure in the process of interspecies mtDNA replication.