970 resultados para THERMAL POWER PLANTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fontes renováveis de energia baseadas na geração fotovoltaica (GFV) são alternativas energéticas promissoras para a complementação da geração elétrica convencional e centralizada, como usinas térmicas a diesel que suprem potência para redes elétricas isoladas em cidades e localidades remotas na Amazônia. A alocação e o dimensionamento de geradores para aplicação como geração distribuída (GD) é um problema desafiador, com implicações técnicas e econômicas, relacionadas ao planejamento, projeto e operação da rede e, particularmente, a GFV em função das condições ambientais, principalmente radiação solar e temperatura ambiente. Esta tese apresenta uma metodologia analítica para alocar e dimensionar a potência ativa de unidades de geração fotovoltaica, composta pelo gerador FV integrado ao inversor CC/CA (GDFV) para integração, de forma concentrada ou dispersa em redes isoladas de média tensão, e contempla o atendimento de múltiplos objetivos, melhoria do perfil de tensão da rede, redução das perdas ativas e redução da participação da geração a diesel, proporcionando redução no consumo de óleo diesel e, consequentemente, redução da poluição ambiental. A solução global do método proposto constitui um compromisso em relação a esses objetivos, apresentando ponderações diferenciadas para os mesmos, de acordo com prioridades estabelecidas no planejamento do sistema elétrico sob estudo. Para validação da metodologia proposta, foram modeladas e simuladas as redes de 33 e 69 barras do IEEE e um sistema elétrico isolado, cuja usina térmica a diesel supre alimentação para a cidade de Aveiro-PA, Região Amazônica, obtendo-se como resultados dessas simulações melhoria significativa no perfil de tensão, redução nas perdas ativas e na potência de geração a diesel, de acordo com indicadores técnicos que permitem a avaliação quantitativa da integração da GDFV na rede elétrica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tertiary sector is largely responsible for the growth of electricity consumption in Brazil. The large commercial and public buildings, hypermarkets and shopping centers stand out as major consumers of electricity for lighting, power and thermal energy. Brazil presents significant potential for the deployment of small cogeneration plants, especially in the tertiary sector. Allied to this, the possibility of natural gas supply and the growing demands in favor of maintaining and preserving the environment favor the implementation of cogeneration plants. In this context, this paper presents a technical and economic analysis of installing a cogeneration plant using internal combustion engine with natural gas in a mall

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a study of the absorption refrigeration system and the modeling and evaluation of two cycles using the binary solutions water-lithium bromide and ammonia-water for an equipment to be used in small size plants like residences. The study and evaluation aims the complete understanding of all parts of the system and the influence of each one of them as well as the spread of the knowledge to raise the use of this type of equipment in all sizes in order to decrease the energetic consumption of plants of all scales and making viable the alternative sources. The study is done in each element of the cycle separately and in some auxiliary equipments required in the operation such as the main power source, the solar collector. The software used for modeling, with emphasis on thermal part, was the EES (Engineering Equation Solver), that permitted the thermal balance calculus and acquisition of the used fluids properties. The results obtained for the equipment shows the system is more complex than the widely used in business, however, it can be viable and represents an alternative to increase the energetic efficiency

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the concepts of sustainability, energy audit magnified its importance in managing systems in industrial plants. Can reduce waste and save energy representative, the improvement and development of thermal and electrical systems can be very attractive to business. With the focus on a boiler generating steam, the energy audit aimed to increase efficiency and eliminate energy losses of the heat engine. The boiler in question is commonly called CO boiler because most of the calorific power provided comes from this. Using a fuel gas from the catalyst regeneration process, it has featured in the boiler power generation system of the refinery. Burning a mixture of gaseous components from discarded into the atmosphere, the heat engine can generate tons of steam just as the other boilers installed. The challenge was to work with this gas mixture and obtain maximum efficiency, reduce moisture and enjoy the warmth of the heat exchange have been studied and recommended. Every project, from evaluation of the variables in the composition of fuel gas, to the using of heat exchangers and refrigeration system are suitable for evaluation and improvements

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growing world energy demand mainly from developing countries like Brazil, Russia, India and China, the search for efficient sources of energy becomes a challenge for the coming years. Among the most widely used alternative sources, biomass is the one that grows in a more pronounced way. This study will assess the real possibility of having it as a heat source in an Organic Rankine Cycle, which employ heat transfer fluids as working fluids instead of water. From a regional data collection in agricultural production and their potential rice production and the resulting husk was defined as more appropriate. The availability of husks together with an amount of eucalyptus wood, provided by a company in the region on a monthly basis, were analyzed, and the low participation of the wood was discarded by the thermal contribution of little significance. Based on this, it was established the calorific value of fuel for thermodynamic calculations and the cycle to be used. It was then carried out the choice of working fluid from the literature and their availability in the library of software used for the simulations, the Engineering Equation Solver - ESS. The fluid most appropriate for the burning of biomass, Octamethyltrisiloxane (OMTS), was not included in the software and so the R227ea and R134a were selected. After the initial parameters modeling definition, as condensing temperature, efficiency and live steam conditions, the simulations were performed, and only the R227ea remained within the feasible thermodynamic and technological ranges. With this fluid the turbine power output was 265.7 [kW] for a scenario of 24 hours/day burning, 800.3 [kW] to biomass burning for 8 hours/day and 2134 [kW] for burning only 3 hours/day. The thermal efficiency of the cycle remained in the range of 6%, and for plants operating with the most... (Complete Abstract click eletronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil, due to its availability, sugar cane bagasse has a high potential for power generation. The knowledge of ignition behavior, as well as the knowledge of the chemical kinetics, in of fuels combustion process is important features in boilers projects and in the stability of the combustion process control. The aim of this study is to investigate the thermal behavior of sugar cane bagasse, coal and their blends. The methodology proposed by Tognotti et al. (1985) was applied to determine the ignition temperature for all samples. Ignition temperatures were 256oC for neat bagasse and 427oC for neat coal, and 275oC for both blends (50-50% and 25-75%). The ModelFree Kinetics was applied to determine the apparent activation energy (Eα) of the thermal decomposition of sugar cane bagasse. For the two major events of mass loss of bagasse which correspond to the thermal decomposition of organic matter (mainly hemicellulose, cellulose and lignin), average values of Eα were obtained for both combustion and pyrolysis processes. In synthetic air atmosphere, the Eα were 170.8±26.3 kJ⋅mol-1 and 277.8±58.6 kJ⋅mol-1, while in nitrogen atmosphere, the Eα were 185.0 ± 11.4 kJ⋅mol-1 and 82.1±44.4 kJ⋅mol-1. The results obtained can be explained by synergistic effects when both bagasse and coal were blended, changing the fuel reactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)