956 resultados para TGF-BETA SIGNALING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes resulting from isothermal decomposition of the beta-phase have been studied in Cu-rich binary Cu-Al and ternary Cu-Al-Sn alloys containing up to 3 at.% Sn at temperatures from 873 to 673 K. Results are presented as TTT diagrams. The decomposition occurs in several stages, each of which involves the establishment of metastable equilibrium between beta and one or more of the product phases alpha, beta(1) and gamma(2). Addition of Sn has been shown to increase the stability of the ordered beta(1)-phase in relation to beta. In alloys containing more than 2 at.% Sn, the beta(1) emerges as a stable phase. At low Sn concentrations beta(1) is metastable. An important new finding is the existence of three-phase equilibrium microstructure containing alpha, beta(1) and gamma(2). Increasing addition of Sn alters the morphology of beta(1) from rosettes to dendrites and finally to Widmanstatten needles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in A (amyloid ) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal A fragments, DAEFRHDSGYEV (A12) and DAEFRHDSGYEVHHQK (A16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with A12 and A16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in A12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2 A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1 alpha, IL-1 beta, G-CSF, GM-CSF, MIP-1 alpha, IFN-gamma, IL-17, and TNF-alpha. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells in cell based therapy for cardiac injury is being potentially considered. However, genetic regulatory networks involved in cardiac differentiation are not clearly understood. Among stem cell differentiation models, mouse P19 embryonic carcinoma (EC) cells, are employed for studying (epi)genetic regulation of cardiomyocyte differentiation. Here, we comprehensively assessed cardiogenic differentiation potential of 5-azacytidine (Aza) on P19 EC-cells, associated gene expression profiles and the changes in DNA methylation, histone acetylation and activated-ERK signaling status during differentiation. Initial exposure of Aza to cultured EC-cells leads to an efficient (55%) differentiation to cardiomyocyte-rich embryoid bodies with a threefold (16.8%) increase in the cTnI(+) cardiomyocytes. Expression levels of cardiac-specific gene markers i.e., Isl-1, BMP-2, GATA-4, and alpha-MHC were up-regulated following Aza induction, accompanied by differential changes in their methylation status particularly that of BMP-2 and alpha-MHC. Additionally, increases in the levels of acetylated-H3 and pERK were observed during Aza-induced cardiac differentiation. These studies demonstrate that Aza is a potent cardiac inducer when treated during the initial phase of differentiation of mouse P19 EC-cells and its effect is brought about epigenetically and co-ordinatedly by hypo-methylation and histone acetylation-mediated hyper-expression of cardiogenesis-associated genes and involving activation of ERK signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of Tyr-His vs. Cys-His interacting pairs to the scaffold stability of (D)Pro-(L)Pro nucleated peptide beta-hairpins has been examined. We present direct evidence for the superiority of the Cys-His pairs, mediated by sulphur-imidazole interactions, as added stabilizing agents of the beta-hairpin scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the beta gamma-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in beta gamma-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods: Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results: Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion: When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display `native state aggregation', leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy ``distort motif, lose central vision''.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-Prism I fold lectins constitute one of the five widely occurring structural classes of plant lectins. Each single domain subunit is made up of three Greek key motifs arranged in a threefold symmetric fashion. The threefold symmetry is not reflected in the sequence except in the case of the lectin from banana, a monocot, which carries two sugar-binding sites instead of the one in other lectins of known three-dimensional structure, all from dicots. This is believed to be a consequence of the different evolutionary paths followed by the lectin in monocots and dicots. The galactose-specific lectins among them have two chains produced by posttranslational proteolysis and contain three aromatic residues at the binding site. The extended binding sites of galactose- and mannose-specific lectins have been thoroughly characterized. Ligand binding at the sites involves both conformational selection and induced fit. Molecular plasticity of some of the lectins in the family has been characterized. The plasticity appears to be such as to promote variability in quaternary association which could be dimeric, tetrameric, or octameric. Structural and evolutionary reasons for the variability have been explored, and the relation of oligomerization to ligand binding and conformational selection investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the structure constants of the N = 1 beta deformed theory perturbatively and at strong coupling. We show that the planar one loop corrections to the structure constants of single trace gauge invariant operators in the scalar sector is determined by the anomalous dimension Hamiltonian. This result implies that 3 point functions of the chiral primaries of the theory do not receive corrections at one loop. We then study the structure constants at strong coupling using the Lunin-Maldacena geometry. We explicitly construct the supergravity mode dual to the chiral primary with three equal U(1) R-charges in the Lunin-Maldacena geometry. We show that the 3 point function of this supergravity mode with semi-classical states representing two other similar chiral primary states but with large U(1) charges to be independent of the beta deformation and identical to that found in the AdS(5) x S-5 geometry. This together with the one-loop result indicate that these structure constants are protected by a non-renormalization theorem. We also show that three point function of U(1) R-currents with classical massive strings is proportional to the R-charge carried by the string solution. This is in accordance with the prediction of the R-symmetry Ward identity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the thermoelectric properties of beta-FeSi2 using first principles electronic structure and Boltzmann transport calculations. We report a high thermopower for both p- and n-type beta-FeSi2 over a wide range of carrier concentration and in addition find the performance for n-type to be higher than for the p-type. Our results indicate that, depending upon temperature, a doping level of 3 x 10(20) to 2 x 10(21) cm(-3) may optimize the thermoelectric performance. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we evaluate the performance of a burst retransmission method for an optical burst switched network with intermediate-node-initiation (INI) signaling technique. The proposed method tries to reduce the burst contention probability at the intermediate core nodes. We develop an analytical model to get the burst contention probability and burst loss probability for an optical burst switched network with intermediate-node-initiation signaling technique. The proposed method uses the optical burst retransmission method. We simulate the performance of the optical burst retransmission. Simulation results show that at low traffic loads the loss probability is low compared to the conventional burst retransmission in the OBS network. Result also show that the retransmission method for OBS network with intermediate-node-initiation signaling technique significantly reduces the burst loss probability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Genetic variants of NOD2 are linked to inflammatory bowel disease (IBD) etiology. Results: DSS model of colitis in wild-type and inducible nitric-oxide synthase (iNOS) null mice revealed that NOD2-iNOS/NO-responsive microRNA-146a targets NUMB gene facilitating Sonic hedgehog (SHH) signaling. Conclusion: miR-146a-mediated NOD2-SHH signaling regulates gut inflammation. Significance: Identification of novel regulators of IBD provides new insights into pathophysiology and development of new therapy concepts. Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disorder of the intestine. The interactions between enteric bacteria and genetic susceptibilities are major contributors of IBD etiology. Although genetic variants with loss or gain of NOD2 functions have been linked to IBD susceptibility, the mechanisms coordinating NOD2 downstream signaling, especially in macrophages, during IBD pathogenesis are not precisely identified. Here, studies utilizing the murine dextran sodium sulfate model of colitis revealed the crucial roles for inducible nitric-oxide synthase (iNOS) in regulating pathophysiology of IBDs. Importantly, stimulation of NOD2 failed to activate Sonic hedgehog (SHH) signaling in iNOS null macrophages, implicating NO mediated cross-talk between NOD2 and SHH signaling. NOD2 signaling up-regulated the expression of a NO-responsive microRNA, miR-146a, that targeted NUMB gene and alleviated the suppression of SHH signaling. In vivo and ex vivo studies confirmed the important roles for miR-146a in amplifying inflammatory responses. Collectively, we have identified new roles for miR-146a that established novel cross-talk between NOD2-SHH signaling during gut inflammation. Potential implications of these observations in therapeutics could increase the possibility of defining and developing better regimes to treat IBD pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation instabilities, such as shear cracking and grain boundary cavitation, which are observed in the secondary tensile region of Ti-6Al-4V alloy during compressive deformation in the (+)-phase field, do not form in Ti-6Al-4V-0.1B alloy when processed under the same conditions. This has been attributed to the microstructural modifications, e.g. the absence of grain boundary and adjacent grain boundary retained layers and a lower proportion of 90(o)-misoriented -colonies that occur with boron addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. However, several pathogens have evolved strategies to evade autophagy. Here, we demonstrated that Mycobacteria, Shigella, and Listeria but not Klebsiella, Staphylococcus, and Escherichia inhibit IFNG-induced autophagy in macrophages by evoking selective and robust activation of WNT and SHH pathways via MTOR. Utilization of gain- or loss-of-function analyses as well as mir155-null macrophages emphasized the role of MTOR-responsive epigenetic modifications in the induction of Mir155 and Mir31. Importantly, cellular levels of PP2A, a phosphatase, were regulated by Mir155 and Mir31 to fine-tune autophagy. Diminished expression of PP2A led to inhibition of GSK3B, thus facilitating the prolonged activation of WNT and SHH signaling pathways. Sustained WNT and SHH signaling effectuated the expression of anti-inflammatory lipoxygenases, which in tandem inhibited IFNG-induced JAK-STAT signaling and contributed to evasion of autophagy. Altogether, these results established a role for new host factors and inhibitory mechanisms employed by the pathogens to limit autophagy, which could be targeted for therapeutic interventions.