962 resultados para System complexity
Resumo:
The aim of this paper is presenting the modules of the Adaptive Educational Hypermedia System PCMAT, responsible for the recommendation of learning objects. PCMAT is an online collaborative learning platform with a constructivist approach, which assesses the user’s knowledge and presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module and search and retrieval module choose the most adequate learning object, based on the user's characteristics and performance, and in this way contribute to the system’s adaptability.
Resumo:
Shopping centers present a rich and heterogeneous environment, where IT systems can be implemented in order to support the needs of its actors. However, due to the environment complexity, several feasibility issues emerge when designing both the logical and physical architecture of such systems. Additionally, the system must be able to cope with the individual needs of each actor, and provide services that are easily adopted by them, taking into account several sociological and economical aspects. In this sense, we present an overview of current support systems for shopping center environments. From this overview, a high-level model of the domain (involving actors and services) is described along with challenges and possible features in the context of current Semantic Web, mobile device and sensor technologies.
Resumo:
The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
Nowadays, the phenomenon of population ageing represents an worldwide problem, which assumes particular significance in Portugal. As they get older, individuals present more comorbidities and consequently consume an increasing number of drugs, which contributes to a growing drug therapy complexity. The institutionalized elders are particularly affected by this occurrence. Drug therapy complexity is defined as the conciliator of several characteristics of the pharmacotherapy and can affect patient’s safety and medication adherence. It can be measured with Medication Regimen Complexity Index (MRCI). This study aims to determine the drug therapy complexity of institutionalized elders in order to assess the need of pharmacotherapeutic follow-up.
Resumo:
In this paper, we foresee the use of Multi-Agent Systems for supporting dynamic and distributed scheduling in Manufacturing Systems. We also envisage the use of Autonomic properties in order to reduce the complexity of managing systems and human interference. By combining Multi-Agent Systems, Autonomic Computing, and Nature Inspired Techniques we propose an approach for the resolution of dynamic scheduling problem, with Case-based Reasoning Learning capabilities. The objective is to permit a system to be able to automatically adopt/select a Meta-heuristic and respective parameterization considering scheduling characteristics. From the comparison of the obtained results with previous results, we conclude about the benefits of its use.
Resumo:
We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.
Resumo:
Hybridization of intelligent systems is a promising research field of computational intelligence focusing on combinations of multiple approaches to develop the next generation of intelligent systems. In this paper we will model a Manufacturing System by means of Multi-Agent Systems and Meta-Heuristics technologies, where each agent may represent a processing entity (machine). The objective of the system is to deal with the complex problem of Dynamic Scheduling in Manufacturing Systems.
Resumo:
OBJECTIVE: To assess the effects of individual, household and healthcare system factors on poor children's use of vaccination after the reform of the Colombian health system. METHODS: A household survey was carried out in a random sample of insured poor population in Bogota, in 1999. The conceptual and analytical framework was based on the Andersen's Behavioral Model of Health Services Utilization. It considers two units of analysis for studying vaccination use and its determinants: the insured poor population, including the children and their families characteristics; and the health care system. Statistical analysis were carried out by chi-square test with 95% confidence intervals, multivariate regression models and Cronbach's alpha coefficient. RESULTS: The logistic regression analysis showed that vaccination use was related not only to population characteristics such as family size (OR=4.3), living area (OR=1.7), child's age (OR=0.7) and head-of-household's years of schooling (OR=0.5), but also strongly related to health care system features, such as having a regular health provider (OR=6.0) and information on providers' schedules and requirements for obtaining care services (OR=2.1). CONCLUSIONS: The low vaccination use and the relevant relationships to health care delivery systems characteristics show that there are barriers in the healthcare system, which should be assessed and eliminated. Non-availability of regular healthcare and deficient information to the population are factors that can limit service utilization.
Resumo:
The aim of this paper is presenting the recommendation module of the Mathematics Collaborative Learning Platform (PCMAT). PCMAT is an Adaptive Educational Hypermedia System (AEHS), with a constructivist approach, which presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module is responsible for choosing different learning resources for the platform, based on the user's characteristics and performance. Since the main purpose of an adaptive system is to provide the user with content and interface adaptation, the recommendation module is integral to PCMAT’s adaptation model.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
Emotion although being an important factor in our every day life it is many times forgotten in the development of systems to be used by persons. In this work we present an architecture for a ubiquitous group decision support system able to support persons in group decision processes. The system considers the emotional factors of the intervenient participants, as well as the argumentation between them. Particular attention will be taken to one of components of this system: the multi-agent simulator, modeling the human participants, considering emotional characteristics, and allowing the exchanges of hypothetic arguments among the participants.
Resumo:
With the increasing importance of large commerce across the Internet it is becoming increasingly evident that in a few years the Iternet will host a large number of interacting software agents. a vast number of them will be economically motivated, and will negociate a variety of goods and services. It is therefore important to consider the economic incentives and behaviours of economic software agents, and to use all available means to anticipate their collective interactions. This papers addresses this concern by presenting a multi-agent market simulator designed for analysing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, consideting risk preferences. The system includes agents that are capable of increasing their performance with their own experience, by adapting to the market conditions. The results of the negotiations between agents are analysed by data minig algorithms in order to extract rules that give agents feedback to imprive their strategies.