999 resultados para Synthetic Metals
Resumo:
New environmentally acceptable production methods are required to help reduce the environmental impact of many industrial processes. One potential route is the application of photocatalysis using semiconductors. This technique has enabled new environmentally acceptable synthetic routes for organic synthesis which do not require the use of toxic metals as redox reagents. These photocatalysts also have more favourable redox potentials than many traditional reagents. Semiconductor photocatalysis can also be applied to the treatment of polluted effluent or for the destruction of undesirable by-products of reactions. In addition to the clean nature of the process the power requirements of the technique can be relatively low, with some reactions requiring only sunlight.
Resumo:
By combining density functional theory calculation and microkinetic analysis, NO oxidation on the platinum group metal oxides (PtO(2), IrO(2), OsO(2)) is investigated, aiming at shedding light on the activities of metal oxides and exploring the activity variations of metal oxides compared to their corresponding metals. A microkinetic model, taking into account the possible low diffusion of surface species on metal oxide surfaces, is proposed for NO oxidation. The resultant turnover frequencies of NO oxidation show that under the typical experimental condition, T = 600 K, p(O2) = 0.1 atm, p(NO) = 3 x 10(-4) atm, p(NO2) = 1.7 x 10(-4) atm; (i) IrO(2)(110) exhibits higher activity than PtO(2)(110) and OsO(2)(110), and (ii) compared to the corresponding metallic Pt, Ir, and Os, the activity of PtO(2) to catalyze NO oxidation is lower, but interestingly IrO(2) and OsO(2) exhibit higher activities. The reasons for the activity differences between the metals and oxides are addressed. Moreover, other possible reaction pathways of NO oxidation on PtO(2)(110), involving O(2) molecule (NO + O(2) -> OONO) and lattice bridge-O(2c), are also found to give low activities. The origin of the Pt catalyst deactivation is also discussed.
Resumo:
Hydrogenation reactions at transition metal surfaces comprise a key set of reactions in heterogeneous catalysis. In this paper, density functional theory methods are employed to take an in-depth look at this fundamental reaction type. The energetics of hydrogenation of atomic C, N, and O have been studied in some detail over low index Zr, Nb, Mo, Tc, Ru, Rh, and Pd surfaces. Detailed bonding analysis has also been employed to track carefully the chemical changes taking place during reaction. A number of interesting horizontal and vertical trends have been uncovered relating to reactant valency and metal d-band filling. A general correlation has also been found between the reaction barriers and the reaction potential energies. Moreover, when each reaction is considered independently, correlation has been found to improve with decreasing reactant valency. Bonding analysis has pointed to this being related to the relative position of the transition state along the reaction coordinate and has shown that as reactant valency decreases, the transition states become progressively later.
Resumo:
A series of acyl phosphonamidates, the synthetic precursors to bisphosphonates, have been readily prepared from phosphoramidite type reagents and a range of acid chlorides. These reactions were performed using solventless conditions, where purification was easily achieved using column chromatography with yields ranging from 71-90%. Furthermore, we have demonstrated that these acyl phosphonamidates could be used for the preparation of unsymmetrical bisphosphonates, which do date are scarcely reported in the literature.
Resumo:
The invention relates to a process for dissolving metals (e.g., Al, Cu, Fe, Cr, Sb, Ti, and W) in perhalide contg. ionic liqs. having the formula (I), and to the extn. of metals from mineral ores; the remediation of materials contaminated with heavy, toxic, or radioactive metals; and to the removal of heavy and toxic metals from hydrocarbon streams. In the formula (I), [X] comprises at least one perhalide anion selected from [I3]-, [BrI2]-, [Br2I]-, [ClI2]-, [ClBr2]-, [BrCl2]-, or [ICl2]-, [ClI3]-. The (Cat+) is a cationic species selected from: ammonium, azaannulenium, azathiazolium, benzimidazolium, benzofuranium, benzotriazolium, borolium, cinnolinium, diazabicyclodecenium, diazabicyclononenium, diazabicyclo- undecenium, dithiazolium, furanium, guanidinium, imidazolium, indazolium, indolinium, indolium, morpholinium, oxaborolium, oxaphospholium, oxazinium, oxazolium, iso-oxazolium, oxathiazolium, pentazolium, phospholium, phosphonium, phthalazinium, piperazinium, piperidinium, pyranium, pyrazinium, pyrazolium, pyridazinium, pyridinium, pyrimidinium, pyrrolidinium, pyrrolium, quinazolinium, quinolinium, isoquinolinium, quinoxalinium, selenozolium, sulfonium, tetrazolium, iso-thiadiazolium, thiazinium, thiazolium, thiophenium, thiuronium, triazadecenium, triazinium, triazolium, iso-triazolium, and uronium. [on SciFinder(R)]
Resumo:
This invention relates to a process for removing metals, particularly mercury, from hydrocarbon streams by use of an ionic liq., where in the metal-contg. hydrocarbon stream is contacted with an ionic liq. to produce a product hydrocarbon stream having reduced mercury content. [on SciFinder(R)]
Resumo:
A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g-1 at 0.1 C and 74 mAh g-1 at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term cyclic performance (115 mAh g-1 after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene. © 2013 American Chemical Society.
Resumo:
The effects of potentially toxic metals on ectomycorrhizal (ECM) fungi and their higher plant hosts are examined in this review. Investigations at a species and community level have revealed wide inter- and intraspecific variation in sensitivity to metals. Adaptive and constitutive mechanisms of ECM tolerance are proposed and discussed in relation to proven tolerance mechanisms in bacteria, yeasts and plants. Problems with methodology and research priorities are highlighted. These include the need for a detailed understanding of the genetic basis of tolerance in the ECM symbiosis, and for studies of ECM community dynamics in polluted sites.
Resumo:
Case histories of large, accidental fires are presented to illustrate that heavy metals may be used as markers to assess the extent of localized environmental contamination resulting from fires. Due to the complexity of fire chemistry with respect to organic pollutants, determination of organic pollutants in the environment following a fire would be time consuming and expensive. Using heavy metals as markers on the other hand is much cheaper and can be done very rapidly. © 1995.