950 resultados para Symmetric Even Graphs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88. Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eccentric connectivity index of a graph G, ξ^C, was proposed by Sharma, Goswami and Madan. It is defined as ξ^C(G) = ∑ u ∈ V(G) degG(u)εG(u), where degG(u) denotes the degree of the vertex x in G and εG(u) = Max{d(u, x) | x ∈ V (G)}. The eccentric connectivity polynomial is a polynomial version of this topological index. In this paper, exact formulas for the eccentric connectivity polynomial of Cartesian product, symmetric difference, disjunction and join of graphs are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 05C35.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 42C05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 03E04, 12J15, 12J25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Николай Кутев, Величка Милушева - Намираме експлицитно всичките би-омбилични фолирани полусиметрични повърхнини в четиримерното евклидово пространство R^4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.2.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Асен Божилов, Недялко Ненов - Нека G е n-върхов граф и редицата от степените на върховете му е d1, d2, . . . , dn, а V(G) е множеството от върховете на G. Степента на върха v бележим с d(v). Най-малкото естествено число r, за което V(G) има r-разлагане V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6 = j такова, че d(v) ≤ n − |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r е означено с ϕ(G). В тази работа доказваме неравенството ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having a distinguished or root vertex, labeled 0. The hierarchical product G2 ⊓ G1 of G2 and G1 is a graph with vertex set V2 × V1. Two vertices y2y1 and x2x1 are adjacent if and only if y1x1 ∈ E1 and y2 = x2; or y2x2 ∈ E2 and y1 = x1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb indices of this new operation of graphs are computed. As an application, these topological indices for a class of alkanes are computed. ACM Computing Classification System (1998): G.2.2, G.2.3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of essential variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method of uncertainty evaluation for axi-symmetric measurement machines which is compliant with GUM and PUMA methodologies. Specialized measuring machines for the inspection of axisymmetric components enable the measurement of properties such as roundness (radial runout), axial runout and coning. These machines typically consist of a rotary table and a number of contact measurement probes located on slideways. Sources of uncertainty include the probe calibration process, probe repeatability, probe alignment, geometric errors in the rotary table, the dimensional stability of the structure holding the probes and form errors in the reference hemisphere which is used to calibrate the system. The generic method is described and an evaluation of an industrial machine is described as a worked example. Type A uncertainties were obtained from a repeatability study of the probe calibration process, a repeatability study of the actual measurement process, a system stability test and an elastic deformation test. Type B uncertainties were obtained from calibration certificates and estimates. Expanded uncertainties, at 95% confidence, were then calculated for the measurement of; radial runout (1.2 µm with a plunger probe or 1.7 µm with a lever probe); axial runout (1.2 µm with a plunger probe or 1.5 µm with a lever probe); and coning/swash (0.44 arc seconds with a plunger probe or 0.60 arc seconds with a lever probe).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the use of manifold learning techniques to enhance the separation properties of standard graph kernels. The idea stems from the observation that when we perform multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to be clustered along a curve that wraps around the embedding space, a behavior that suggests that long range distances are not estimated accurately, resulting in an increased curvature of the embedding space. Hence, we propose to use a number of manifold learning techniques to compute a low-dimensional embedding of the graphs in an attempt to unfold the embedding manifold, and increase the class separation. We perform an extensive experimental evaluation on a number of standard graph datasets using the shortest-path (Borgwardt and Kriegel, 2005), graphlet (Shervashidze et al., 2009), random walk (Kashima et al., 2003) and Weisfeiler-Lehman (Shervashidze et al., 2011) kernels. We observe the most significant improvement in the case of the graphlet kernel, which fits with the observation that neglecting the locational information of the substructures leads to a stronger curvature of the embedding manifold. On the other hand, the Weisfeiler-Lehman kernel partially mitigates the locality problem by using the node labels information, and thus does not clearly benefit from the manifold learning. Interestingly, our experiments also show that the unfolding of the space seems to reduce the performance gap between the examined kernels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.