996 resultados para Suzanne K. Murrmann
Resumo:
OBJECTIVE: Ovarian cancer is the most lethal gynecological malignancy that affects women. Recent data suggests that the disease may originate in the fallopian fimbriae; however, the anatomical origin of ovarian carcinogenesis remains unclear. This is largely driven by our lack of knowledge regarding the structure and function of normal fimbriae and the relative paucity of models that accurately recapitulate the in vivo fallopian tube. Therefore, a human three-dimensional (3D) culture system was developed to examine the role of the fallopian fimbriae in serous tumorigenesis.
METHODS: Alginate matrix was utilized to support human fallopian fimbriae ex vivo. Fimbriae were cultured with factors hypothesized to contribute to carcinogenesis, namely; H2O2 (1mM) a mimetic of oxidative stress, insulin (5μg/ml) to stimulate glycolysis, and estradiol (E2, 10nM) which peaks before ovulation. Cultures were evaluated for changes in proliferation and p53 expression, criteria utilized to identify potential precursor lesions. Further, secretory factors were assessed after treatment with E2 to identify if steroid signaling induces a pro-tumorigenic microenvironment.
RESULTS: 3D fimbriae cultures maintained normal tissue architecture up to 7days, retaining both epithelial subtypes. Treatment of cultures with H2O2 or insulin significantly induced proliferation. However, p53 stabilization was unaffected by any particular treatment, although it was induced by ex vivo culturing. Moreover, E2-alone treatment significantly induced its canonical target PR and expression of IL8, a factor linked to poor outcome.
CONCLUSIONS: 3D alginate cultures of human fallopian fimbriae provide an important microphysiological model, which can be further utilized to investigate serous tumorigenesis originating from the fallopian tube.
Resumo:
This paper presents a study on concrete fracture and the associated mesh sensitivity using the finite element (FE) method with a local concrete model in both tension (Mode I) and compression.To enable the incorporation of dynamic loading, the FE model is developed using a transient dynamic analysis code LS-DYNA Explicit.A series of investigations have been conducted on typical fracture scenarios to evaluate the model performances and calibration of relevant parameters.The K&C damage model was adopted because it is a comprehensive local concrete model which allows the user to change the crack band width, fracture energy and rate dependency of the material.Compressive localisation modelling in numerical modelling is also discussed in detail in relation to localisation.An impact test specimen is modelled.
Resumo:
Massive amount of data that are geo-tagged and associated with text information are being generated at an unprecedented scale. These geo-textual data cover a wide range of topics. Users are interested in receiving up-to-date tweets such that their locations are close to a user specified location and their texts are interesting to users. For example, a user may want to be updated with tweets near her home on the topic “food poisoning vomiting.” We consider the Temporal Spatial-Keyword Top-k Subscription (TaSK) query. Given a TaSK query, we continuously maintain up-to-date top-k most relevant results over a stream of geo-textual objects (e.g., geo-tagged Tweets) for the query. The TaSK query takes into account text relevance, spatial proximity, and recency of geo-textual objects in evaluating its relevance with a geo-textual object. We propose a novel solution to efficiently process a large number of TaSK queries over a stream of geotextual objects. We evaluate the efficiency of our approach on two real-world datasets and the experimental results show that our solution is able to achieve a reduction of the processing time by 70-80% compared with two baselines.
Resumo:
The 2014 Research Excellence Framework sought for the first time to assess the impact that research was having beyond the boundaries of the university and the wider academic sphere. While the REF continued the approach of previous research assessment exercises in attempting to measure the overall quality of research and teaching within the higher-education sector, it also expected institutions to evidence how some of their research had had ‘an effect on, change or benefit to the economy, society, culture, public policy or services, health, the environment or quality of life, beyond academia’ (REF 2012: 48). This article provides a case study in how researchers in one U.K. anthropology department were able to demonstrate the impact of their work in the public sphere successfully as part of this major audit exercise.
Resumo:
Ovarian cancer is very treatable in the early stages of disease; however, it is usually detected in the later stages, at which time, treatment is no longer as effective. If discovered early (Stage I), there is a 90% chance of five-year survival. Therefore, it is imperative that early-stage biomarkers are identified to enhance the early detection of ovarian cancer. Cancer-testis antigens (CTAs), such as Per ARNT SIM (PAS) domain containing 1 (PASD1), are unique in that their expression is restricted to immunologically restricted sites, such as the testis and placenta, which do not express MHC class I, and cancer, making them ideally positioned to act as targets for immunotherapy as well as potential biomarkers for cancer detection where expressed. We examined the expression of PASD1a and b in a number of cell lines, as well as eight healthy ovary samples, eight normal adjacent ovarian tissues, and 191 ovarian cancer tissues, which were predominantly stage I (n = 164) and stage II (n = 14) disease. We found that despite the positive staining of skin cancer, only one stage Ic ovarian cancer patient tissue expressed PASD1a and b at detectable levels. This may reflect the predominantly stage I ovarian cancer samples examined. To examine the restriction of PASD1 expression, we examined endometrial tissue arrays and found no expression in 30 malignant tumor tissues, 23 cases of hyperplasia, or 16 normal endometrial tissues. Our study suggests that the search for a single cancer-testes antigen/biomarker that can detect early ovarian cancer must continue.
Resumo:
We show that the X-ray line flux of the Mn K line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M⊙) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes ˜3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn K line flux of the delayed-detonation model exceeds that of the merger model by a factor of ˜4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (≲1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above ˜2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to ˜3 Mpc for an exposure time of 106 s. We find that it should be possible with currently existing X-ray instruments (with exposure times ≲5 × 105 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of ˜5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011fe (˜6.4 Mpc) and SN 2014J (˜3.5 Mpc).
Resumo:
Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.
Resumo:
BACKGROUND: The transtheoretical model has been successful in promoting health behavior change in general and clinical populations. However, there is little knowledge about the application of the transtheoretical model to explain physical activity behavior in individuals with non-cystic fibrosis bronchiectasis. The aim was to examine patterns of (1) physical activity and (2) mediators of behavior change (self-efficacy, decisional balance, and processes of change) across stages of change in individuals with non-cystic fibrosis bronchiectasis.
METHODS: Fifty-five subjects with non-cystic fibrosis bronchiectasis (mean age ± SD = 63 ± 10 y) had physical activity assessed over 7 d using an accelerometer. Each component of the transtheoretical model was assessed using validated questionnaires. Subjects were divided into groups depending on stage of change: Group 1 (pre-contemplation and contemplation; n = 10), Group 2 (preparation; n = 20), and Group 3 (action and maintenance; n = 25). Statistical analyses included one-way analysis of variance and Tukey-Kramer post hoc tests.
RESULTS: Physical activity variables were significantly (P < .05) higher in Group 3 (action and maintenance) compared with Group 2 (preparation) and Group 1 (pre-contemplation and contemplation). For self-efficacy, there were no significant differences between groups for mean scores (P = .14). Decisional balance cons (barriers to being physically active) were significantly lower in Group 3 versus Group 2 (P = .032). For processes of change, substituting alternatives (substituting inactive options for active options) was significantly higher in Group 3 versus Group 1 (P = .01), and enlisting social support (seeking out social support to increase and maintain physical activity) was significantly lower in Group 3 versus Group 2 (P = .038).
CONCLUSIONS: The pattern of physical activity across stages of change is consistent with the theoretical predictions of the transtheoretical model. Constructs of the transtheoretical model that appear to be important at different stages of change include decisional balance cons, substituting alternatives, and enlisting social support. This study provides support to explore transtheoretical model-based physical activity interventions in individuals with non-cystic fibrosis bronchiectasis.
Resumo:
Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 106). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1126-134 (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.
Resumo:
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.