994 resultados para Superconductor electric devices
Resumo:
In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature.© 2010 IEEE.
Resumo:
A low specific on-resistance (R-{{\rm on}, {\rm sp}}) integrable silicon-on-insulator (SOI) MOSFET is proposed, and its mechanism is investigated by simulation. The SOI MOSFET features double trenches and dual gates (DTDG SOI): an oxide trench in the drift region, a buried gate inset in the oxide trench, and another trench gate (TG) extended to a buried oxide layer. First, the dual gates form dual conduction channels, and the extended gate widens the vertical conduction area; both of which sharply reduce R-{{\rm on}, {\rm sp}}. Second, the oxide trench folds the drift region in the vertical direction, resulting in a reduced device pitch and R-{{\rm on}, {\rm sp}}. Third, the oxide trench causes multidirectional depletion. This not only enhances the reduced surface field effect and thus reshapes the electric field distribution but also increases the drift doping concentration, leading to a reduced R-{{\rm on}, {\rm sp}} and an improved breakdown voltage (BV). Compared with a conventional SOI lateral Double-diffused metal oxide semiconductor (LDMOS), the DTDG MOSFET increases BV from 39 to 92 V at the same cell pitch or decreases R-{{\rm on}, { \rm sp}} by 77% at the same BV by simulation. Finally, the TG extended synchronously acts as an isolation trench between the high/low-voltage regions in a high-voltage integrated circuit, saving the chip area and simplifying the isolation process. © 2006 IEEE.
Resumo:
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
We report on novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence phase devices with 100 μs switching times at low fields, i.e.2-5 V/μm, and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect optically isotropic or black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color, 4) chiral nematic optical reflectors electric field tunable over a wide wavelength range and 5) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers. © 2011 Materials Research Society.
Resumo:
One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNTinorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O 3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Lowloss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Currentvoltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectriccarbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. © 2012 IOP Publishing Ltd.
Resumo:
Over the past 20 years, ferroelectric liquid crystal over silicon (FLCOS) devices have made a wide impact on applications as diverse as optical correlation and holographic projection. To cover the entire gamut of this technology would be difficult and long winded; hence, this paper describes the significant developments of FLCOS within the Engineering Department at the University of Cambridge.The purpose of this paper is to highlight the key issues in fabricating silicon backplane spatial light modulators (SLMs) and to indicate ways in which the technology can be fabricated using cheap, low-density production and manufacturability. Three main devices have been fabricated as part of several research programmes and are documented in this paper. The fast bitplane SLM and the reconfigurable optical switches for aerospace and telecommunications systems (ROSES) SLM will form the basis of a case study to outline the overall processes involved. There is a great deal of commonality in the fabrication processes for all three devices, which indicates their potential strength and demonstrates that these processes can be made independent of the SLMs that are being assembled. What is described is a generic process that can be applied to any silicon backplane SLM on a die-by-die basis. There are hundreds of factors that can affect the yield in a manufacturing process and the purpose of a good process design procedure is to minimise these factors. One of the most important features in designing a process is fabrication experience, as so many of the lessons in this business can only be learned this way. We are working with the advantage of knowing the mistakes already made in the flat panel display industry, but we are also faced with the fact that those mistakes took many years and many millions of dollars to make.The fabrication process developed here originates and adapts earlier processes from various groups around the world. There are also a few totally new processes that have now been adopted by others in the field. Many, such as the gluing process, are still on-going and have to be worked on more before they will fully suit 'manufacturability'. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW.
Resumo:
A method to measure the optical response across the surface of a phase-only liquid crystal on silicon device using binary phase gratings is described together with a procedure to compensate its spatial optical phase variation. As a result, the residual power between zero and the minima of the first diffraction order for a binary grating can be reduced by more than 10 dB, from -15.98 dB to -26.29 dB. This phase compensation method is also shown to be useful in nonbinary cases. A reduction in the worst crosstalk by 5.32 dB can be achieved when quantized blazed gratings are used.
Resumo:
This paper presents a comprehensive theoretical study of the Trench Insulated Gate Bipolar Transistors (TIGBT). Specific physical and geometrical effects, such as the accumulation layer injection, increased channel density, increased channel charge and transversal electric field modulation are discussed. The potential advantages of the Trench IGBT over its conventional planar variant are highlighted. It is concluded that the Trench IGBT is one of the most promising structures in the area of high voltage MOS-controllable switching devices.
Resumo:
A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.
Resumo:
Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.
Resumo:
Innovation is a critical factor in ensuring commercial success within the area of medical technology. Biotechnology and Healthcare developments require huge financial and resource investment, in-depth research and clinical trials. Consequently, these developments involve a complex multidisciplinary structure, which is inherently full of risks and uncertainty. In this context, early technology assessment and 'proof of concept' is often sporadic and unstructured. Existing methodologies for managing the feasibility stage of medical device development are predominantly suited to the later phases of development and favour detail in optimisation, validation and regulatory approval. During these early phases, feasibility studies are normally conducted to establish whether technology is potentially viable. However, it is not clear how this technology viability is currently measured. This paper aims to redress this gap through the development of a technology confidence scale, as appropriate explicitly to the feasibility phase of medical device design. These guidelines were developed from analysis of three recent innovation studies within the medical device industry.
Resumo:
We report an on-chip integrated ferroelectric liquid crystal (FLC) waveguide structure suitable for telecommunication applications. Single gaps with different widths of 5, 10, and 20 μ m inside individual silica waveguides were filled with an FLC mixture. The waveguide devices operate as a binary switch or an attenuator in a temperature range from 30 °C to 60 °C. The FLC mixture exhibited a good alignment quality in these gaps without alignment layers. A good extinction ratio of up to 33.9 dB and a low insertion loss of <4.3 dB at λ = 1550 nm were observed. Switching times of <100 μs were obtained for the low electric fields applied in this experiment. © 2012 IEEE.
Resumo:
The electrical and structural characteristics of tantalum-titanium bilayers on silicon reacted by electron beam heating have been investigated over a wide range of temperature and time conditions. The reacted layers exhibit low sheet resistance and stable electrical characteristics up to at least 1100℃. Titanium starts reacting from 750℃ onwards for 100 milliseconds reaction times whereas tantalum starts reacting only above 900℃ for such short reaction times. RBS results confirm that silicon is the major diffusing species and there is no evidence for the formation of ternary silicides. Reactions have also been explored on millisecond time scales by non-isothermal heating.