976 resultados para Sulphur


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of a multidisciplinary research program, an organic geochemical study was carried out on a drill core which comprises a 245 m thick sequence of light-colored, Upper Albian marlstones that were deposited in the central part of the Lower Saxony basin (northern Germany). For part of the Upper Albian sequence, high-resolution measurements of carbonate contents reveal cycles which can be related to earth orbital forcing. Based on these data, sediment accumulation rates were calculated to be in the order of 15 g/m**2/yr. These high accumulation rates contrast with very low organic carbon contents and an extremely poor preservation of the autochthonous organic matter. Most of the sedimentary organic matter is of terrigenous origin and mainly derived from the erosion of older sedimentary rocks. Organic petrography reveals only a very small fraction of marine organic particles. Carbon/sulphur ratios, pristane/phytane ratios as well as the predominance of resedimented organic particles over autochthonous organic particles suggest that aerobic degradation processes rather than anaerobic processes (sulphate reduction) were responsible for the degradation of the organic matter. Furthermore, the scarcity of terrigenous organic particles (vitrinite) indicates that there was little vegetation on nearby land areas. To explain these analytical results, a depositional model was developed which could explain the scarcity of organic matter in the Upper Albian sediments. This model is based on downwelling of oxygen-rich, saline waters of Tethyan origin, which reduces the nutrient content of surface waters and thus primary bioproductivity while degradation of primary organic matter in the water column is enhanced at the same time. These conditions contrast to those which existed in Barremian and early Aptian times in this basin, when limited water exchange with adjacent oceans caused oxygen deficiency and the deposition of numerous organic carbon-rich black shales. The thick, organic matter-poor Upper Albian sequence of northern Germany also contrasts with comparatively thin, time-equivalent, deep-sea black shales from Italy. This discrepancy indicates that local and regional oceanographic factors (at least in this case) have a greater influence on organic matter deposition than global events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass (Zostera marina) bed in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytes and seston, as well as consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope signatures was observed in primary producers and consumer species. However, variation within a species, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Legs 127 and 128 in the Japan Sea have revealed the existence of numerous dark-light rhythms of remarkable consistency in sediments of late Miocene, latest Pliocene, and especially Pleistocene age. Light-colored units within these rhythms are massive or bioturbated, consist of diatomaceous clays, silty clays, or nannofossil-rich clays, and are generally poor in organic matter. Dark-colored units are homogeneous, laminated, or thinly bedded and include substantial amounts of biogenic material such as well-preserved diatoms, planktonic foraminifers, calcareous nannofossils, and organic matter (maximum 7.4 wt%). The dark-light rhythms show a similar geometrical pattern on three different scales: First-order rhythms consist of a cluster dominated by dark-colored units followed by a cluster dominated by light-colored units (3-5 m). Spectral analysis of a gray-value time series suggests that the frequencies of the first-order rhythms in sediments of latest Pliocene and Pleistocene age correlate to the obliquity and the eccentricity cycles. The second-order dark-light rhythms include a light and a dark-colored unit (10-160 cm). They were formed in time spans of several hundred to several ten thousand years, with variance centering around 10,500 yr. This frequency may correspond to half the precessional cycle. Third-order rhythms appear as laminated or thinly bedded dark-light couplets (2-15 mm) within the dark-colored units of the second-order rhythms and may represent annual frequencies. In interpreting the rhythms, we have to take into account that (1) the occurrence of the first- and second-order rhythms is not necessarily restricted to glacial or interglacial periods as is shown by preliminary stable-isotope analysis and comparison with the published d18O record; (2) they appear to be Milankovitch-controlled; and (3) a significant number of the rhythms are sharply bounded. The origin of the dark-light rhythms is probably related to variations in monsoonal activity in the Japan Sea, which show annual frequencies, but also operates in phase with the orbital cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a part of the Russian-German project "Siberian River-Runoff (SIRRO)" the major element composition of the dissolved load and the major and trace element composition of particulate load and bottom sediment of the Yenisei River and Estuary were analyzed and examined in context of the basin lithology and climate. In addition, the processes controlling the transformation of the river load in the estuarine mixing zone were investigated. The chemical composition of the dissolved and particulate load of the Yenisei fluvial endmember is generally comparable to that of other major world rivers. The dissolved load is chiefly controlled by carbonate weathering and the chemical composition of the river suspended particulate matter (SPM) is similar to that of the North American Shale Composite (NASC), which represents the weathering product of the upper continental crust. The Chemical Index of Alteration (CIA) of the Yenisei SPM amounts to 71, which indicates moderate chemical weathering. With regard to the SPM geochemistry, the Yenisei occupies an intermediate position between the adjacent rivers Khatanga and the Lena. Drastic changes in the composition of the river load are seen in the mixing zone between fresh and salt water. While dissolved Na, Ca, Mg, K, CI, S04, F, Br, Sr and HC03 behave conservatively, dissolved Fe is completely removed from solution at very low salinities. Particulate Mn exhibits a pronounced mid-salinity minimum concomitant with a maximum of dissolved Mn, which is probably related to suboxic conditions in the area of the so-called "marginal filter", where highest turbidities are found. The Mn-minimum in SPM is paralleled by depletions of the elements Ba, Zn, Cd, Ni, Cu and V, which can be associated with manganese particles. The estuarine bottom sediments are composed of mud and sand and the sedimentological parameters of the bottom sediments have to be considered for the interpretation of the bulk geochemical data. The chemical composition of the mud is comparable to the SPM, whereas the sand is relatively enriched in Si/Al, Ba/Al, Zr/Al and Sr/Al ratios and depleted in transition metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on 13 published porewater H2S and sulphate profiles the amount of H2S escaping from non-bioturbated shales varies between some few % to 45% of the amount of bacterially generated H2S. This finding permits calculation of the original organic carbon (TOCor) content of immature nonbioturbated shales using TOC and sulphur content data. In two immature non-bioturbated sequences from Hungary (Toarcian and Oligocene) the first-order correlation between HI and TOC/TOCor was found to be stronger than that between HI and TOC, indicating that sulphate reduction was the leading process both in decrease in TOC content and degradation of kerogen source potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the sea ice proxy IP25 and phytoplankton-derived biomarkers (brassicasterol and dinosterol) Arctic sea-ice conditions were reconstructed for Marine Isotope Stage (MIS) 3 to 1 in sediment cores from the north of Barents Sea continental margin across the Central Arctic to the Southern Mendeleev Ridge. Our results suggest more extensive sea-ice cover than present-day during MIS 3, increasing sea-ice growth during MIS 2 and decreased sea-ice cover during the last deglacial. The summer ice edge sustained north of the Barents Sea even during extremely cold (i.e., Last Glacial Maximum (LGM)) as well as warm periods (i.e., Bølling-Allerød). During the LGM, the western Svalbard margin and the northern Barents Sea margin areas were characterized by high concentrations of both IP25 and phytoplankton biomarkers, interpreted as a productive ice-edge situation, caused by the inflow of warm Atlantic Water. In contrast, the LGM high Arctic proper (north of 84°N) was covered by thick permanent sea ice throughout the year with rare break up, indicated by zero or near-zero biomarker concentrations. The spring/summer sea-ice margin significantly extended southwards to the southern Lomonosov Ridge and Mendeleev Ridge during the LGM. Our proxy reconstructions are very consistent with published model results based on the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic-carbon-rich anoxic sediments from the continental shelf (Site 680) and the lower continental slope (Site 688) off Peru were studied to determine factors controlling the accumulation of reduced sulfur. High concentrations of organic matter in diatomaceous muds, its thermal immaturity, and the presence of abundant hydrogen-containing organic compounds lead to the conclusion that organic matter is not limiting for reduced sulfur formation. Rather, high degrees of iron pyritization at Site 680 limit pyrite accumulation in sediments from this shelf site. The low degree of iron pyritization and nearly complete reduction of dissolved sulfate at Site 688 suggest that a lack of interstitial sulfate is limiting pyrite formation there. Although factors that limit the formation of sedimentary iron sulfide are different at each site, the resulting average reduced-sulfur concentrations are remarkably similar (0.85 wt.% at Site 680 and 0.86 wt.% at Site 688). Carbon to sulfur (C/S) ratios are higher in samples containing in excess of 3 wt.% organic carbon than the average of 2.8 in normal marine sediments and have been primarily influenced by variations in organic matter concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock magnetic/paleoclimatic/diagenetic relationships of sediments spanning the last 0.78 Ma have been investigated using samples collected from light and dark layers recovered at ODP Sites 794 (Yamato Basin) and 795 (Japan Basin). Rock-magnetic parameters (K, Kfd, ARM, SIRM, S-ratio) are shown to reflect diagenetic processes and climate-related variations in the concentration, mineralogy and grain-size of the magnetic minerals contained within the sediments. The magnetic mineralogy is dominated by ferrimagnetic (magnetite-type) minerals with a small contribution made by hematite and iron sulphides such as pyrrhotite and/or greigite. Magnetic mineral concentration and grain size vary between light and dark layers with the former characterized by a higher magnetic content and a finer magnetic grain size. Magnetite dissolution, related to sulfate reduction due to bacterial degradation of organic matter, is the process responsible for the magnetic characteristics observed in the dark layers, testifying to the reducing conditions in the basin. Variations in the rock magnetic properties of the sediments are strongly correlated with global oxygen isotope fluctuations, with glacial stages characterized by a lower magnetic mineral content and a coarser magnetic grain size relative to interglacial stages. Major downcore changes in the magnetic properties observed at Site 794 can be related to changes in the oceanographic conditions of the basin associated with the flow of the warm Tsushima Current into the Japan Sea at about 0.35-0.40 Ma ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep sea manganese nodules from the Southern Ocean have been studied using chemical analysis, X-ray diffraction, optical mineragraphic and electron probe microanalysis techniques. The nodules were lower in manganese, iron and associated elements than the average grade of manganese nodules from other localities. A number of chemical relationships have been observed. Nickel, copper, cobalt, barium, zinc, molybdenum, strontium, sulphur and phosphorus are associated with the manganese rich phases and titanium with the iron rich phases. X-ray diffraction analysis and electron probe microanalysis results indicate that the manganese phases are similar to the disordered delta-MnO2 and "manganite" phases reported by other workers.