998 resultados para Sulfur--Oxidation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts assembled in emulsions are found to be potentially recoverable and efficient for a number of catalytic reactions. The catalysts composed of polyoxometalate anions and quaternary ammonium cations have been designed and synthesized according to the catalytic reactions and by optimizing the structures of cations and anions. The catalysts act essentially as surfactants, which are uniformly distributed in the interface of the emulsion droplets, and accordingly behave like homogeneous catalysts. The catalysts show remarkable selectivity and activity in the oxidation of sulfur-containing molecules to sulfones in diesel and the selective oxidation of alcohols to ketones, using H2O2 as oxidant. For an example, the catalyst demonstrated over 96% efficiency of H2O2 and similar to 100% selectivity to sulfones for the selective oxidation of sulfur-containing molecules in real diesel. Moreover, the catalysts can be separated and recycled by a simple demulsification and re-emulsification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of oxygen-hydrogen pretreatments of nanosilver catalysts in cycle mode on the structure and particle size of silver particles, and subsequently the activity of the catalyst toward CO oxidation (or CO selective oxidation in the presence of H-2) are reported in this paper. Ag/SiO2 catalyst with silver particle sizes of ca. 6 similar to 8 nm shows relatively high activity in the present reaction system. The adopting of a cycle of oxidation/reduction pretreatment has a marked influence on the activity of the catalyst. Oxygen pretreatment at 500 degrees C results in the formation of subsurface oxygen and activates the catalyst. As evidenced by in-situ XRD and TEM, the following H-2 treatment at low temperatures (100 similar to 300 degrees C) causes surface faceting and redispersing of the silver particles without destroying the subsurface oxygen species. The subsequent in-situ FTIR and catalytic reaction results show that CO oxidation occurs at -75 degrees C and complete CO conversion can be obtained at 40 degrees C over such a nanosilver catalyst pretreated with oxygen at 500 degrees C followed by H-2 at 100 degrees C. However, prolonged hydrogen treatment at high temperatures (> 300 degrees C) after oxygen pretreatment at 500 degrees C induces the aggregation of silver particles and also depletes so much subsurface oxygen species that the pathway of CO oxidation by the subsurface oxygen species is inhibited. Meanwhile, the ability of the catalyst to adsorb reactants is greatly depressed, resulting in a 20 similar to 30% decrease in the activity toward CO oxidation. However, the activity of the catalyst pretreated with oxygen at 500 degrees C followed by hydrogen treatment at high temperatures (> 300 degrees C) is still higher than that directly pretreated with H,. This kind of catalytic behavior of silver catalyst is associated with physical changes in the silver crystallites because of surface restructuring and crystallite redispersion during the course of oxygen-hydrogen pretreatment steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ IR measurements for CO adsorption and preferential CO oxidation in H-2-rich gases over Ag/SiO2 catalysts are presented in this paper. CO adsorbed on the Ag/SiO2 pretreated with oxygen shows a band centered around 2169 cm(-1), which is assigned to CO linearly bonded to Ag+ sites. The amount of adsorbed CO on the silver particles ( manifested by an IR band at 2169 cm(-1)) depends strongly on the CO partial pressure and the temperature. The steady-state coverage on the Ag surface is shown to be significantly below saturation, and the oxidation of CO with surface oxygen species is probably via a non-competitive Langmuir Hinshelwood mechanism on the silver catalyst which occurs in the high-rate branch on a surface covered with CO below saturation. A low reactant concentration on the Ag surface indicates that the reaction order with respect to Pco is positive, and the selectivity towards CO2 decreases with the decrease of Pco. On the other hand, the decrease of the selectivity with the reaction temperature also reflects the higher apparent activation energy for H-2 oxidation than that for CO oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver is well known to show peculiar catalytic activities in several oxidation reactions. In the present paper, we investigate the catalytic activity of silver catalysts toward CO-gelective oxidation in H-2. XRD, TEM, TPD, and in situ FTIR techniques were used to characterize the catalysts. The pretreatment of the catalysts was found to have great influence on their performance. The pretreatment in 02 improves the activity of the silver catalyst, whereas He pretreatment at 700 degreesC or direct hydrogen pretreatment shows an inverse effect. Silver catalysts undergo massive structural change during oxygen pretreatment at high temperatures (> 500 degreesC), and there is solid evidence for the formation of subsurface oxygen species. The existence of this silver-subsurface oxygen structure facilitates the formation of active sites on silver catalysts for CO oxidation, which are related to the size, morphology, and exposed crystal planes of the silver particles. Its formation requires a certain temperature, and a higher pretreatment temperature with oxygen is required for the silver catalyst with a smaller particle size. It is observed, for the first time, that adsorbed CO on the surface of silver particles can directly react with subsurface oxygen species at low temperatures (e.g., RT), and the surface oxygen can migrate into and refill these subsurface sites after the consumption of subsurface oxygen by the reaction with CO. This finding provides a new reaction pathway for CO oxidation on silver catalyst. (C) 2004 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted the liquid phase oxidation of toluene with molecular oxygen over heterogeneous catalysts of copper-based binary metal oxides. Among the copper-based binary metal oxides, iron-copper binary oxide (Fe/Cu = 0.3 atomic ratio) was found to be the best catalyst. In the presence of pyridine, overoxidation of benzaldehyde to benzoic acid was partially prevented. As a result, highly selective formation of benzaldehyde (86% selectivity) was observed after 2 h of reaction (7% conversion of toluene) at 463 K and 1.0 MPa of oxygen atmosphere in the presence of pyridine. These catalytic performances were similar or better than those in the gas phase oxidation of toluene at reaction temperatures higher than 473 K and under 0.5-2.5 MPa. It was suggested from competitive adsorption measurements that pyridine could reduce the adsorption of benzaldehyde. At a long reaction time of 4 It, the conversion increased to 25% and benzoic acid became the predominant reaction product (72% selectivity) in the absence of pyridine. The yield of benzoic acid was higher than that in the Snia-Viscosa process, which requires corrosive halogen ions and acidic solvents in the homogeneous reaction media. The catalyst was easily recycled by simple filtration and reusable after washing and drying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper nanoparticles were deposited onto mesoporous SBA-15 support via two different routes: post-grafting method and incipient wet impregnation method. Both XRD and TEM reveal that the post-grafting can make Cu particles very small in size and highly dispersed into channels of SBA-15, while the impregnation method mainly forms large Cu particles on the external surface of SBA-15. TPR experiments show that CuO species formed by the post-grafting method is more reducible than that prepared by the impregnation method. The catalytic activity tests for CO oxidation manifests that the sample prepared by the post-grafting method has a much higher activity than that prepared by the impregnation method, with a lowering of 50 degrees C for T-50, showing a strong dependence of catalytic activity on the size and dispersion of Cu particles. Besides the preparation procedure, other factors including calcination temperature, reduction treatment, copper loading as well as the feed composition, have an important effect on the catalytic activity. The best performance was obtained when the catalyst was calcined at 500 degrees C and reduced at 550 degrees C. The calcination and reduction treatment at high temperature have been found to be necessary to completely remove the organic residue and to generate active metallic copper particles. (c) 2005 Elsevier B.V. All rights reserved.