924 resultados para Studies on oxidative stress in Perna spp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress may increase lung permeability by upregulation of matrix-metalloproteinase-9 (MMP-8), a type-IV collagenase that can disrupt alveolar basement membranes. We have compared a marker of oxidative stress (protein carbonyl residues) with levels of MMP-8 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in bronchoalveolar lavage samples from newborn babies. Bronchoalveolar lavage samples (n = 87, two from each time point) were taken in the first 6 postnatal days from 41 ventilated babies: 18 of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Men with colorectal cancer have a higher mortality rate than their female counterparts. Despite this, there is a limited understanding of the impact gender has on the experience of colorectal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalysts currently employed for the polymerization of ethylene have previously been found to deactivate in the presence of oxygen. It is, therefore, important that oxygen is removed from the ethylene feedstock prior to the polymerization. The Ag/gamma-Al2O3 catalyst exhibits excellent activity and selectivity toward oxygen reduction with hydrogen in the presence of ethylene. TAP vacuum pulse experiments have been utilised to understand the catalytic behaviour of the Ag/gamma-Al2O3 catalyst. TAP multi-pulse experiments have determined the types of active sites that are found on the Ag/gamma-Al2O3 catalyst, and the intrinsic activity of these sites. The lifetime of the reactive adsorbed oxygen intermediate has also been determined through TAP consecutive pulse experiments. Multi-pulse and consecutive pulse data have been combined with ethylene adsorption/desorption rate constants to provide an overview of the Ag/gamma-Al2O3 catalyst system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the consequences of diabetes and obesity, diseases that have become epidemic in our society, particularly in the past 20 years. Specifically, it summarizes current knowledge about some of the risk factors and mechanisms for the vascular complications of diabetes. These complications can be broadly divided into microvascular disease, such as diabetic retinopathy and diabetic nephropathy, and macrovascular disease, such as accelerated atherosclerosis, and they are the main cause for morbidity and premature mortality among diabetic patients. The roles of hyperglycemia, dyslipidemia and dyslipoproteinemia, oxidative stress, and endothelial dysfunction will be considered. Finally, the "treatment gap" will be addressed. This gap refers to our failure to achieve currently accepted goals to reduce established risk factors for complications in the clinical management of diabetic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxymethyllysine (CML) has been identified as a modified amino acid that accumulates with age in human lens proteins and collagen. CML may be formed by oxidation of fructoselysine (FL), the Amadori adduct formed on nonenzymatic glycosylation of lysine residues in protein, or by reaction of ascorbate with protein under autoxidizing conditions. We proposed that measurements of tissue and urinary CML may be useful as indices of oxidative stress or damage to proteins in vivo. To determine the extent to which oxidation of nonenzymatically glycosylated proteins contributes to urinary CML, we measured the urinary concentrations of FL and CML in diabetic (n = 26) and control (n = 28) patients. The urinary concentration of FL correlated strongly with HbA1 measurements and was significantly higher in diabetic compared with control samples (9.2 +/- 6.5 and 4.0 +/- 2.8 micrograms/mg creatinine, respectively; P less than 0.0001). There was also a strong correlation between the concentrations of CML and FL in both diabetic and control urine (r = 0.67, P less than 0.0001) but only a weakly significant increase in the CML concentration in diabetic compared with control urine (1.2 +/- 0.5 and 1.0 +/- 0.3 micrograms/mg creatinine, respectively; P = 0.05). The molar ratio of CML to FL was significantly lower in diabetic compared with control patients (0.25 +/- 0.12 and 0.43 +/- 0.16, respectively; P less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)