977 resultados para Stomach of rats


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucose and other reducing sugars react with proteins by a nonenzymatic, posttranslational modification process called nonenzymatic glycation. The formation of advanced glycation end products (AGEs) on connective tissue and matrix components accounts largely for the increase in collagen crosslinking that accompanies normal aging and which occurs at an accelerated rate in diabetes, leading to an increase in arterial stiffness. A new class of AGE crosslink “breakers” reacts with and cleaves these covalent, AGE-derived protein crosslinks. Treatment of rats with streptozotocin-induced diabetes with the AGE-breaker ALT-711 for 1–3 weeks reversed the diabetes-induced increase of large artery stiffness as measured by systemic arterial compliance, aortic impedance, and carotid artery compliance and distensibility. These findings will have considerable implications for the treatment of patients with diabetes-related complications and aging.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Δ9-Desaturase is a key enzyme in the synthesis of desaturated fatty acyl-CoAs. Desaturase is an integral membrane protein induced in the endoplasmic reticulum by dietary manipulations and then rapidly degraded. The proteolytic machinery that specifically degrades desaturase and other short-lived proteins in the endoplasmic reticulum has not been identified. As the first step in identifying cellular factors involved in the degradation of desaturase, liver subcellular fractions of rats that had undergone induction of this enzyme were examined. In livers from induced animals, desaturase was present in the microsomal, nuclear (P-1), and subcellular fractions (P-2). Incubation of desaturase containing fractions at physiological pH and temperature led to the complete disappearance of the enzyme. Washing microsomes with a buffer containing high salt decreased desaturase degradation activity. N-terminal sequence analysis of desaturase freshly isolated from the P-1 fraction without incubation indicated the absence of three residues from the N terminus, but the mobility of this desaturase preparation on SDS-PAGE was identical to the microsomal desaturase, which contains a masked N terminus under similar purification procedures. Addition of concentrated cytosol or the high-salt wash fraction did not enhance the desaturase degradation in the washed microsomes. Extensive degradation of desaturase in the high-salt washed microsomes could be restored by supplementation of the membranes with the lipid and protein components essential for the reconstituted desaturase catalytic activity. Lysosomotrophic agents leupeptin and pepstatin A were ineffective in inhibiting desaturase degradation. The calpain inhibitor, N-acetyl-leucyl-leucyl-methional, or the proteosome inhibitor, Streptomyces metabolite, lactacystin, did not inhibit the degradation of desaturase in the microsomal or the P-1 and P-2 fractions. These results show that the selective degradation of desaturase is likely to be independent of the lysosomal and the proteosome systems. The reconstitution of complete degradation of desaturase in the high-salt–washed microsomes by the components essential for its catalytic activity reflects that the degradation of this enzyme may depend on a specific orientation of desaturase and intramembranous interactions between desaturase and the responsible protease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accelerating hippocampal sprouting by making unilateral progressive lesions of the entorhinal cortex spared the spatial memory of rats tested for retention of a learned alternation task. Subsequent transection of the sprouted crossed temporodentate pathway (CTD), as well as a simultaneous CTD transection and progressive entorhinal lesion, produced a persistent deficit on the memory task. These results suggest that CTD sprouting, which is homologous to the original perforant path input to the dentate gyrus of the hippocampus, is behaviorally significant and can ameliorate at least some of the memory deficits associated with hippocampal deafferentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the early events in physiological shock is the generation of activators for leukocytes, endothelial cells, and other cells in the cardiovascular system. The mechanism by which these activators are produced has remained unresolved. We examine here the hypothesis that pancreatic digestive enzymes in the ischemic intestine may be involved in the generation of activators during intestinal ischemia. The lumen of the small intestine of rats was continuously perfused with saline containing a broadly acting pancreatic enzyme inhibitor (6-amidino-2-naphthyl p-guanidinobenzoate dimethanesulfate, 0.37 mM) before and during ischemia of the small intestine by splanchnic artery occlusion. This procedure inhibited activation of circulating leukocytes during occlusion and reperfusion. It also prevented the appearance of activators in portal venous and systemic artery plasma and attenuated initiating symptoms of multiple organ injury in shock. Intestinal tissue produces only low levels of activators in the absence of pancreatic enzymes, whereas in the presence of enzymes, activators are produced in a concentration- and time-dependent fashion. The results indicate that pancreatic digestive enzymes in the ischemic intestine serve as an important source for cell activation and inflammation, as well as multiple organ failure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We eliminated type β transforming growth factor (TGF-β) signaling by adenovirus-mediated local expression of a dominant-negative type II TGF-β receptor (AdCATβ-TR) in the liver of rats treated with dimethylnitrosamine, a model of persistent liver fibrosis. In rats that received a single application of AdCATβ-TR via the portal vein, liver fibrosis as assessed by histology and hydroxyproline content was markedly attenuated. All AdCATβ-TR-treated rats remained alive, and their serum levels of hyaluronic acid and transaminases remained at low levels, whereas all the AdCATβ-TR-untreated rats died of liver dysfunction. The results demonstrate that TGF-β does play a central role in liver fibrogenesis and indicate clearly in a persistent fibrosis model that prevention of fibrosis by anti-TGF-β intervention could be therapeutically useful.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies of mRNA for classical glutathione peroxidase 1 (GPx1) demonstrated that hepatocytes of rats fed a selenium-deficient diet have less cytoplasmic GPx1 mRNA than hepatocytes of rats fed a selenium-adequate diet. This is because GPx1 mRNA is degraded by the surveillance pathway called nonsense-mediated mRNA decay (NMD) when the selenocysteine codon is recognized as nonsense. Here, we examine the mechanism by which the abundance of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, another selenocysteine-encoding mRNA, fails to decrease in the hepatocytes and testicular cells of rats fed a selenium-deficient diet. We demonstrate with cultured NIH3T3 fibroblasts or H35 hepatocytes transiently transfected with PHGPx gene variants under selenium-supplemented or selenium-deficient conditions that PHGPx mRNA is, in fact, a substrate for NMD when the selenocysteine codon is recognized as nonsense. We also demonstrate that the endogenous PHGPx mRNA of untransfected H35 cells is subject to NMD. The failure of previous reports to detect the NMD of PHGPx mRNA in cultured cells is likely attributable to the expression of PHGPx cDNA rather than the PHGPx gene. We conclude that 1) the sequence of the PHGPx gene is adequate to support the NMD of product mRNA, and 2) there is a mechanism in liver and testis but not cultured fibroblasts and hepatocytes that precludes or masks the NMD of PHGPx mRNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The isolation of thionein (T) from tissues has not been reported heretofore. T contains 20 cysteinyl residues that react with 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide to form fluorescent adducts. In metallothionein (MT) the cysteinyl residues, which are bound to zinc, do not react. However, they do react in the presence of a chelating agent such as EDTA. The resultant difference in chemical reactivity provides a means to measure T in the absence of EDTA, (MT + T) in its presence, and, of course, MT by difference. The 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide derivative of T can be isolated from tissue homogenates by HPLC and quantified fluorimetrically with a detection limit in the femtomolar range and a linear response over 3 orders of magnitude. Analysis of liver, kidney, and brain of rats reveals almost as much T as MT. Moreover, in contrast to earlier views, MT in tissue extracts appears to be less stable than T. The existence of T in tissues under normal physiological conditions has important implications for its function both in zinc metabolism and the redox balance of the cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We previously reported that short-term immobilization stress of rats causes increased colonic mucin release, goblet cell depletion, prostaglandin E2 secretion, and colonic mast cell activation, as well as increased colonic motility. The purpose of this study was to investigate whether neurotensin (NT), a peptide expressed in both brain and digestive tract, participates in these responses. Rats were pretreated with SR 48692 (1 mg/kg, i.p.), an NT antagonist, 15 min before immobilization (30 min). The administration of the antagonist significantly inhibited stress-mediated secretion of colonic mucin, prostaglandin E2, and a product of rat mast cells, rat mast cell protease II (P < 0.05), but did not alter the increase in fecal pellet output caused by immobilization stress. Immobilization stress also resulted in a quantifiable decrease in the abundance of NT receptor mRNA in rat colon compared with that in colonic tissues from nonimmobilized rats as measured by densitometric analysis of in situ hybridization studies (P < 0.03). We conclude that the peptide NT is involved in colonic goblet cell release and mucosal mast cell activation after immobilization stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mesolimbic dopamine system, which arises in the ventral tegmental area (VTA), is an important neural substrate for opiate reinforcement and addiction. Chronic exposure to opiates is known to produce biochemical adaptations in this brain region. We now show that these adaptations are associated with structural changes in VTA dopamine neurons. Individual VTA neurons in paraformaldehyde-fixed brain sections from control or morphine-treated rats were injected with the fluorescent dye Lucifer yellow. The identity of the injected cells as dopaminergic or nondopaminergic was determined by immunohistochemical labeling of the sections for tyrosine hydroxylase. Chronic morphine treatment resulted in a mean approximately 25% reduction in the area and perimeter of VTA dopamine neurons. This reduction in cell size was prevented by concomitant treatment of rats with naltrexone, an opioid receptor antagonist, as well as by intra-VTA infusion of brain-derived neurotrophic factor. In contrast, chronic morphine treatment did not alter the size of nondopaminergic neurons in the VTA, nor did it affect the total number of dopaminergic neurons in this brain region. The results of these studies provide direct evidence for structural alterations in VTA dopamine neurons as a consequence of chronic opiate exposure, which could contribute to changes in mesolimbic dopamine function associated with addiction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Megalin (gp330), an epithelial endocytic receptor, is a major target antigen of Heymann nephritis (HN), an autoimmune disease in rats. To elucidate the mechanisms of HN, we have mapped a pathogenic epitope in megalin that binds anti-megalin antibodies. We focused our attention on four clusters of cysteine-rich, low density lipoprotein receptor (LDLR) ligand binding repeats in the extracellular domain of megalin because they represent putative ligand binding regions and therefore would be expected to be exposed in vivo and to be able to bind circulating antibodies. Rat megalin cDNA fragments I through IV encoding the first through fourth clusters of ligand-binding repeats, respectively, were expressed in a baculovirus system. All four expression products were detected by immunoblotting with two antisera capable of inducing passive HN (pHN). When antibodies eluted from glomeruli of rats with pHN were used for immunoblotting, only the expression product encoded by fragment II was detected. This indicates that the second cluster of LDLR ligand binding repeats is directly involved in binding anti-megalin antibodies and in the induction of pHN. To narrow the major epitope in this domain, fragment II was used to prepare proteins sequentially truncated from the C- and N-terminal ends by in vitro translation. Analysis of the truncated translation products by immunoprecipitation with anti-megalin IgG revealed that the fifth ligand-binding repeat (amino acids 1160-1205) contains the major epitope recognized. This suggests that a 46-amino acid sequence in the second cluster of LDLR ligand binding repeats contains a major pathogenic epitope that plays a key role in pHN. Identification of this epitope will facilitate studies on the pathogenesis of HN.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Septic shock is a cytokine-mediated process typically caused by a severe underlying infection. Toxins generated by the infecting organism trigger a cascade of events leading to hypotension, to multiple organ system failure, and frequently to death. Beyond supportive care, no effective therapy is available for the treatment of septic shock. Nitric oxide (NO) is a potent vasodilator generated late in the sepsis pathway leading to hypotension; therefore, NO represents a potential target for therapy. We have previously demonstrated that transforming growth factor (TGF) beta1 inhibits inducible NO synthase (iNOS) mRNA and NO production in vascular smooth muscle cells after its induction by cytokines critical in the sepsis cascade. Thus, we hypothesized that TGF-beta1 may inhibit iNOS gene expression in vivo and be beneficial in the treatment of septic shock. In a conscious rat model of septic shock produced by Salmonella typhosa lipopolysaccharide (LPS), TGF-beta1 markedly reduced iNOS mRNA and protein levels in several organs. In contrast, TGF-beta1 did not decrease endothelium-derived constitutive NOS mRNA in organs of rats receiving LPS. We also performed studies in anesthetized rats to evaluate the effect of TGF-beta1 on the hemodynamic compromise of septic shock; after an initial 25% decrease in mean arterial pressure, TGF-beta1 arrested LPS-induced hypotension and decreased mortality. A decrease in iNOS mRNA and protein levels in vascular smooth muscle cells was demonstrated by in situ hybridization and NADPH diaphorase staining in rats treated with TGF-beta1. Thus these studies suggest that TGF-beta1 inhibits iNOS in vivo and that TGF-beta1 may be of future benefit in the therapy of septic shock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the neuropathological characteristics of the brain of rats receiving daily intracerebroventricular administration of freshly dissolved human immunodeficiency virus type 1 recombinant protein gp120 (100 ng per rat per day) given for up to 14 days. Histological examination of serial brain sections revealed no apparent gross damage to the cortex or hippocampus, nor did cell counting yield significant neuronal cell loss. However, the viral protein caused after 7 and 14 days of treatment DNA fragmentation in 10% of brain cortical neurons. Interestingly, reduced neuronal nitric oxide synthase (NOS) expression along with significant increases in nerve growth factor (NGF) were observed in the hippocampus, where gp120 did not cause neuronal damage. No changes in NGF and NOS expression were seen in the cortex, where cell death is likely to be of the apoptotic type. The present data demonstrate that gp120-induced cortical cell death is associated with the lack of increase of NGF in the cerebral cortex and suggest that the latter may be important for the expression of neuropathology in the rat brain. By contrast, enhanced levels of NGF may prevent or delay neuronal death in the hippocampus, where reduced NOS expression may be a reflection of a subcellular insult inflicted by the viral protein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Restoration of the impaired balance between pro- and antiinflammatory cytokines should provide effective treatment of rheumatoid arthritis. Gene therapy has been proposed as an approach for delivery of therapeutic proteins to arthritic joints. Here, we examined the efficacy of antiinflammatory gene therapy in bacterial cell wall-induced arthritis in rats. Human secreted interleukin 1 receptor antagonist (sIL-1ra) was expressed in joints of rats with recurrent bacterial cell wall-induced arthritis by using ex vivo gene transfer. To achieve this, primary synoviocytes were transduced in culture with a retroviral vector carrying the sIL-1ra cDNA. Transduced cells were engrafted in ankle joints of animals prior to reactivation of arthritis. Animals in control groups were engrafted with synoviocytes transduced with lacZ and neo marker genes. Cells continued to express transferred genes for at least 9 days after engraftment. We found that gene transfer of sIL-1ra significantly suppressed the severity of recurrence of arthritis, as assessed by measuring joint swelling and by the gross-observation score, and attenuated but did not abolish erosion of cartilage and bone. The effect of intraarticularly expressed sIL-1ra was essentially local, as there was no significant difference in severity of recurrence between unengrafted contralateral joints in control and experimental groups. We estimate that locally expressed sIL-1ra was about four orders of magnitude more therapeutically efficient than systemically administered recombinant sIL-1ra protein. These findings provide experimental evidence for the feasibility of antiinflammatory gene therapy for arthritis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to examine the influence of sensory experience on the synaptic circuitry of the cortex. For this purpose, the quantitative distribution of the overall and of the gamma-aminobutyric acid (GABA) population of synaptic contacts was investigated in each layer of the somatosensory barrel field cortex of rats which were sensory deprived from birth by continuously removing rows of whiskers. Whereas there were no statistically significant changes in the quantitative distribution of the overall synaptic population, the number and proportion of GABA-immunopositive synaptic contacts were profoundly altered in layer IV of the somatosensory cortex of sensory-deprived animals. These changes were attributable to a specific loss of as many as two-thirds of the GABA contacts targeting dendritic spines. Thus, synaptic contacts made by GABA terminals in cortical layer IV and, in particular, those targeting dendritic spines represent a structural substrate of experience-dependent plasticity. Furthermore, since in this model of cortical plasticity the neuronal receptive-field properties are known to be affected, we propose that the inhibitory control of dendritic spines is essential for the elaboration of these functional properties.