969 resultados para Stochastic dynamic programming
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
AIM: MRI and PET with 18F-fluoro-ethyl-tyrosine (FET) have been increasingly used to evaluate patients with gliomas. Our purpose was to assess the additive value of MR spectroscopy (MRS), diffusion imaging and dynamic FET-PET for glioma grading. PATIENTS, METHODS: 38 patients (42 ± 15 aged, F/M: 0.46) with untreated histologically proven brain gliomas were included. All underwent conventional MRI, MRS, diffusion sequences, and FET-PET within 3±4 weeks. Performances of tumour FET time-activity-curve, early-to-middle SUVmax ratio, choline / creatine ratio and ADC histogram distribution pattern for gliomas grading were assessed, as compared to histology. Combination of these parameters and respective odds were also evaluated. RESULTS: Tumour time-activity-curve reached the best accuracy (67%) when taken alone to distinguish between low and high-grade gliomas, followed by ADC histogram analysis (65%). Combination of time-activity-curve and ADC histogram analysis improved the sensitivity from 67% to 86% and the specificity from 63-67% to 100% (p < 0.008). On multivariate logistic regression analysis, negative slope of the tumour FET time-activity-curve however remains the best predictor of high-grade glioma (odds 7.6, SE 6.8, p = 0.022). CONCLUSION: Combination of dynamic FET-PET and diffusion MRI reached good performance for gliomas grading. The use of FET-PET/MR may be highly relevant in the initial assessment of primary brain tumours.
Resumo:
General Summary Although the chapters of this thesis address a variety of issues, the principal aim is common: test economic ideas in an international economic context. The intention has been to supply empirical findings using the largest suitable data sets and making use of the most appropriate empirical techniques. This thesis can roughly be divided into two parts: the first one, corresponding to the first two chapters, investigates the link between trade and the environment, the second one, the last three chapters, is related to economic geography issues. Environmental problems are omnipresent in the daily press nowadays and one of the arguments put forward is that globalisation causes severe environmental problems through the reallocation of investments and production to countries with less stringent environmental regulations. A measure of the amplitude of this undesirable effect is provided in the first part. The third and the fourth chapters explore the productivity effects of agglomeration. The computed spillover effects between different sectors indicate how cluster-formation might be productivity enhancing. The last chapter is not about how to better understand the world but how to measure it and it was just a great pleasure to work on it. "The Economist" writes every week about the impressive population and economic growth observed in China and India, and everybody agrees that the world's center of gravity has shifted. But by how much and how fast did it shift? An answer is given in the last part, which proposes a global measure for the location of world production and allows to visualize our results in Google Earth. A short summary of each of the five chapters is provided below. The first chapter, entitled "Unraveling the World-Wide Pollution-Haven Effect" investigates the relative strength of the pollution haven effect (PH, comparative advantage in dirty products due to differences in environmental regulation) and the factor endowment effect (FE, comparative advantage in dirty, capital intensive products due to differences in endowments). We compute the pollution content of imports using the IPPS coefficients (for three pollutants, namely biological oxygen demand, sulphur dioxide and toxic pollution intensity for all manufacturing sectors) provided by the World Bank and use a gravity-type framework to isolate the two above mentioned effects. Our study covers 48 countries that can be classified into 29 Southern and 19 Northern countries and uses the lead content of gasoline as proxy for environmental stringency. For North-South trade we find significant PH and FE effects going in the expected, opposite directions and being of similar magnitude. However, when looking at world trade, the effects become very small because of the high North-North trade share, where we have no a priori expectations about the signs of these effects. Therefore popular fears about the trade effects of differences in environmental regulations might by exaggerated. The second chapter is entitled "Is trade bad for the Environment? Decomposing worldwide SO2 emissions, 1990-2000". First we construct a novel and large database containing reasonable estimates of SO2 emission intensities per unit labor that vary across countries, periods and manufacturing sectors. Then we use these original data (covering 31 developed and 31 developing countries) to decompose the worldwide SO2 emissions into the three well known dynamic effects (scale, technique and composition effect). We find that the positive scale (+9,5%) and the negative technique (-12.5%) effect are the main driving forces of emission changes. Composition effects between countries and sectors are smaller, both negative and of similar magnitude (-3.5% each). Given that trade matters via the composition effects this means that trade reduces total emissions. We next construct, in a first experiment, a hypothetical world where no trade happens, i.e. each country produces its imports at home and does no longer produce its exports. The difference between the actual and this no-trade world allows us (under the omission of price effects) to compute a static first-order trade effect. The latter now increases total world emissions because it allows, on average, dirty countries to specialize in dirty products. However, this effect is smaller (3.5%) in 2000 than in 1990 (10%), in line with the negative dynamic composition effect identified in the previous exercise. We then propose a second experiment, comparing effective emissions with the maximum or minimum possible level of SO2 emissions. These hypothetical levels of emissions are obtained by reallocating labour accordingly across sectors within each country (under the country-employment and the world industry-production constraints). Using linear programming techniques, we show that emissions are reduced by 90% with respect to the worst case, but that they could still be reduced further by another 80% if emissions were to be minimized. The findings from this chapter go together with those from chapter one in the sense that trade-induced composition effect do not seem to be the main source of pollution, at least in the recent past. Going now to the economic geography part of this thesis, the third chapter, entitled "A Dynamic Model with Sectoral Agglomeration Effects" consists of a short note that derives the theoretical model estimated in the fourth chapter. The derivation is directly based on the multi-regional framework by Ciccone (2002) but extends it in order to include sectoral disaggregation and a temporal dimension. This allows us formally to write present productivity as a function of past productivity and other contemporaneous and past control variables. The fourth chapter entitled "Sectoral Agglomeration Effects in a Panel of European Regions" takes the final equation derived in chapter three to the data. We investigate the empirical link between density and labour productivity based on regional data (245 NUTS-2 regions over the period 1980-2003). Using dynamic panel techniques allows us to control for the possible endogeneity of density and for region specific effects. We find a positive long run elasticity of density with respect to labour productivity of about 13%. When using data at the sectoral level it seems that positive cross-sector and negative own-sector externalities are present in manufacturing while financial services display strong positive own-sector effects. The fifth and last chapter entitled "Is the World's Economic Center of Gravity Already in Asia?" computes the world economic, demographic and geographic center of gravity for 1975-2004 and compares them. Based on data for the largest cities in the world and using the physical concept of center of mass, we find that the world's economic center of gravity is still located in Europe, even though there is a clear shift towards Asia. To sum up, this thesis makes three main contributions. First, it provides new estimates of orders of magnitudes for the role of trade in the globalisation and environment debate. Second, it computes reliable and disaggregated elasticities for the effect of density on labour productivity in European regions. Third, it allows us, in a geometrically rigorous way, to track the path of the world's economic center of gravity.
Resumo:
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Resumo:
In Arabidopsis, interplay between nuclear auxin perception and trans-cellular polar auxin transport determines the transcriptional auxin response. In brevis radix (brx) mutants, this response is impaired, probably indirectly because of disturbed crosstalk between the auxin and brassinosteroid pathways. Here we provide evidence that BRX protein is plasma membrane-associated, but translocates to the nucleus upon auxin treatment to modulate cellular growth, possibly in conjunction with NGATHA class B3 domain-type transcription factors. Application of the polar auxin transport inhibitor naphthalene phthalamic acid (NPA) resulted in increased BRX abundance at the plasma membrane. Thus, nuclear translocation of BRX could depend on cellular auxin concentration or on auxin flux. Supporting this idea, NPA treatment of wild-type roots phenocopied the brx root meristem phenotype. Moreover, BRX is constitutively turned over by the proteasome pathway in the nucleus. However, a stabilized C-terminal BRX fragment significantly rescued the brx root growth phenotype and triggered a hypocotyl gain-of-function phenotype, similar to strong overexpressors of full length BRX. Therefore, although BRX activity is required in the nucleus, excess activity interferes with normal development. Finally, similar to the PIN-FORMED 1 (PIN1) auxin efflux carrier, BRX is polarly localized in vascular cells and subject to endocytic recycling. Expression of BRX under control of the PIN1 promoter fully rescued the brx short root phenotype, suggesting that the two genes act in the same tissues. Collectively, our results suggest that BRX might provide a contextual readout to synchronize cellular growth with the auxin concentration gradient across the root tip.
Resumo:
Collective dynamic properties in Lennard-Jones crystals are investigated by molecular dynamics simulation. The study is focused on properties such as the dynamic structure factors, the longitudinal and transverse currents and the density of states. The influence on these properties of the structural disorder is analyzed by comparing the results for one-component crystals with those for liquids and supercooled liquids at analogous conditions. The effects of species-disorder on the collective properties of binary crystals are also discussed.
Resumo:
Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.
Resumo:
We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.
Resumo:
In the first part of this paper, we show that the semiclassical Einstein-Langevin equation, introduced in the framework of a stochastic generalization of semiclassical gravity to describe the back reaction of matter stress-energy fluctuations, can be formally derived from a functional method based on the influence functional of Feynman and Vernon. In the second part, we derive a number of results for background solutions of semiclassical gravity consisting of stationary and conformally stationary spacetimes and scalar fields in thermal equilibrium states. For these cases, fluctuation-dissipation relations are derived. We also show that particle creation is related to the vacuum stress-energy fluctuations and that it is enhanced by the presence of stochastic metric fluctuations.
Resumo:
The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.
Resumo:
We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.
Resumo:
We present a class of systems for which the signal-to-noise ratio always increases when increasing the noise and diverges at infinite noise level. This new phenomenon is a direct consequence of the existence of a scaling law for the signal-to-noise ratio and implies the appearance of stochastic resonance in some monostable systems. We outline applications of our results to a wide variety of systems pertaining to different scientific areas. Two particular examples are discussed in detail.