932 resultados para Stochastic Extension
Resumo:
An extension of k-ratio multiple comparison methods to rank-based analyses is described. The new method is analogous to the Duncan-Godbold approximate k-ratio procedure for unequal sample sizes or correlated means. The close parallel of the new methods to the Duncan-Godbold approach is shown by demonstrating that they are based upon different parameterizations as starting points.^ A semi-parametric basis for the new methods is shown by starting from the Cox proportional hazards model, using Wald statistics. From there the log-rank and Gehan-Breslow-Wilcoxon methods may be seen as score statistic based methods.^ Simulations and analysis of a published data set are used to show the performance of the new methods. ^
Resumo:
It is well known that an identification problem exists in the analysis of age-period-cohort data because of the relationship among the three factors (date of birth + age at death = date of death). There are numerous suggestions about how to analyze the data. No one solution has been satisfactory. The purpose of this study is to provide another analytic method by extending the Cox's lifetable regression model with time-dependent covariates. The new approach contains the following features: (1) It is based on the conditional maximum likelihood procedure using a proportional hazard function described by Cox (1972), treating the age factor as the underlying hazard to estimate the parameters for the cohort and period factors. (2) The model is flexible so that both the cohort and period factors can be treated as dummy or continuous variables, and the parameter estimations can be obtained for numerous combinations of variables as in a regression analysis. (3) The model is applicable even when the time period is unequally spaced.^ Two specific models are considered to illustrate the new approach and applied to the U.S. prostate cancer data. We find that there are significant differences between all cohorts and there is a significant period effect for both whites and nonwhites. The underlying hazard increases exponentially with age indicating that old people have much higher risk than young people. A log transformation of relative risk shows that the prostate cancer risk declined in recent cohorts for both models. However, prostate cancer risk declined 5 cohorts (25 years) earlier for whites than for nonwhites under the period factor model (0 0 0 1 1 1 1). These latter results are similar to the previous study by Holford (1983).^ The new approach offers a general method to analyze the age-period-cohort data without using any arbitrary constraint in the model. ^
Resumo:
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a "maximum-sized" ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a "minimum" model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.
Resumo:
Thecosome pteropods (shelled pelagic molluscs) can play an important role in the food web of various ecosystems and play a key role in the cycling of carbon and carbonate. Since they harbor an aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The impact of changes in the carbonate chemistry was investigated on Limacina helicina, a key species of Arctic ecosystems. Pteropods were kept in culture under controlled pH conditions corresponding to pCO2 levels of 350 and 760 µatm. Calcification was estimated using a fluorochrome and the radioisotope 45Ca. It exhibits a 28 % decrease at the pH value expected for 2100 compared to the present pH value. This result supports the concern for the future of pteropods in a high-CO2 world, as well as of those species dependent upon them as a food resource. A decline of their populations would likely cause dramatic changes to the structure, function and services of polar ecosystems.
Resumo:
This data was collected during a cruise to the Kuroshio Extension Front in October 2009. Several chemical and biological parameters were measured: dissolved nutrients, picophytoplankton (by flow cytometry), microphytoplankton (by light microscopy) and phytoplankton pigments (HPLC).
Resumo:
This paper develops a quantitative measure of allocation efficiency, which is an extension of the dynamic Olley-Pakes productivity decomposition proposed by Melitz and Polanec (2015). The extended measure enables the simultaneous capture of the degree of misallocation within a group and between groups and parallel to capturing the contribution of entering and exiting firms to aggregate productivity growth. This measure empirically assesses the degree of misallocation in China using manufacturing firm-level data from 2004 to 2007. Misallocation among industrial sectors has been found to increase over time, and allocation efficiency within an industry has been found to worsen in industries that use more capital and have firms with relatively higher state-owned market shares. Allocation efficiency among three ownership sectors (state-owned, domestic private, and foreign sectors) tends to improve in industries wherein the market share moves from a less-productive state-owned sector to a more productive private sector.
Resumo:
In this paper we generalize the Continuous Adversarial Queuing Theory (CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618, pp. 144–155, 2005) by considering the possibility that the router clocks in the network are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT). Clearly, this new extension to the model only affects those scheduling policies that use some form of timing. In a first approach we consider the case in which although not synchronized, all clocks run at the same speed, maintaining constant differences. In this case we show that all universally stable policies in CAQT that use the injection time and the remaining path to schedule packets remain universally stable. These policies include, for instance, Shortest in System (SIS) and Longest in System (LIS). Then, we study the case in which clock differences can vary over time, but the maximum difference is bounded. In this model we show the universal stability of two families of policies related to SIS and LIS respectively (the priority of a packet in these policies depends on the arrival time and a function of the path traversed). The bounds we obtain in this case depend on the maximum difference between clocks. This is a necessary requirement, since we also show that LIS is not universally stable in systems without bounded clock difference. We then present a new policy that we call Longest in Queues (LIQ), which gives priority to the packet that has been waiting the longest in edge queues. This policy is universally stable and, if clocks maintain constant differences, the bounds we prove do not depend on them. To finish, we provide with simulation results that compare the behavior of some of these policies in a network with stochastic injection of packets.
Resumo:
Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermalhydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. The limitations encountered in the application of the Analytic Coarse Mesh Finite Difference (ACMFD) method –implemented inside ANDES– to fast reactors are presented and the sensitivity of the method when using a high number of energy groups is studied. ANDES performance is assessed by comparison with the results provided by ERANOS, using a mini-core model in 33 energy groups. Furthermore, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry and 4 energy groups is also employed to verify the behavior of the code with few energy groups.