930 resultados para Steel-maker
Resumo:
Corrosion is an undesirable process that occurs in metallic materials. Studied was the effect of inhibiting Benzotriazole (BTAH), Benzimidazole (BZM) and Indole in different concentrations-for the stainless steel (SS) AISI 430 in H(2)SO(4) mol The techniques employed this research were: anodic potenciostatic polarisation, electrochemical impedance spectroscopy, optical microscopy and scanning electron microscopy The curves of anodic polarisation showed that BTAH, BZM and Indol act as corrosion inhibitors for 430 SS, at concentrations of 1x10(-3) and 5x10(-4) mol L(-1) but do not inhibit corrosion for concentrations equal to or less than 1x10(-4) mol L(-1). The in-crease of the efficiency in relation to the inhibitory substances studied followed this order: Indol
Resumo:
Fuel distribution uses 304 stainless steel containers for the storage of biofuels, however there are few reports in the literature about the corrosive aspects this. steel in biodiesel. The objective of this research is to study the corrosive behavior of 304 austenitic stainless steel in the presence of biodiesel, unwashed and washed, with aqueous solutions of citric, oxalic, acetic and ascorbic acids 0,01 mol L(-1), and compare with results obtained for the copper (ASTM D130). The employedtechniques were: atomic absorption spectrometry (AAS) and optical microscopy (OM). The results of EA A showed a low rate of corrosion for the stainless steel, the alloys elements studied were Cr, Ni and Fe, the highest rate was observed for the chrome, 1.78 ppm / day in biodiesel with or without washing. The OM of the 304 steel, when compared with that of copper has a low corrosion rate in the 304 steel/biodiesel system. Not with standing, this demonstrates that not only the 304 steel, but also the copper corrodes in biodiesel
Resumo:
Amino acids and self assembled monolayers (SAM`s) have been studied as to their inhibiting action on the corrosion of metallic materials. The objective of work is to study the electrochemical behavior of the cisteincisteine, the diphosfonate and the mixture of both in inhibiting the action of corrosion on stainless steel 304 in HCl 1 molL(-1). As the following techniques were used: open circuit potential (OCP), potenciostatic anodic polarization (A P), chronoamperomeny (CA), electrochemical impedance spectroscopy (EIS) and optical microscopy (OM). The results of CA showed that cisteine has a double effect, catalytic and inhibiting, in function of the immersion time of the metallic part in the electrolytic solution. AP curves have shown lesser current density for the system containing cisteine diphosfonate suggesting an inhibiting synergic action. These results have been confirmed by EIS and OM.
Resumo:
Continuous casting is a casting process that produces steel slabs in a continuous manner with steel being poured at the top of the caster and a steel strand emerging from the mould below. Molten steel is transferred from the AOD converter to the caster using a ladle. The ladle is designed to be strong and insulated. Complete insulation is never achieved. Some of the heat is lost to the refractories by convection and conduction. Heat losses by radiation also occur. It is important to know the temperature of the melt during the process. For this reason, an online model was previously developed to simulate the steel and ladle wall temperatures during the ladle cycle. The model was developed as an ODE based model using grey box modeling technique. The model’s performance was acceptable and needed to be presented in a user friendly way. The aim of this thesis work was basically to design a GUI that presents steel and ladle wall temperatures calculated by the model and also allow the user to make adjustments to the model. This thesis work also discusses the sensitivity analysis of different parameters involved and their effects on different temperature estimations.
Resumo:
Hot rolling process is heat input process. The heat energy in hot rolled steel coils can be utilized. At SSAB Strip Product Borlänge when the hot rolled steel coils came out of the hot rolling mill they are at the temperature range of 500°C to 800°C. Heat energy contained by the one hot rolled steel coil is about 1981Kwh whereas the total heat energy for the year 2008 is 230 GWh/year.The potential of heat is too much but the heat dissipation rate is too slow. Different factors on which heat dissipation rate depends are discussed.Three suggestions are proposed to collect the waste heat from hot rolled steel coils.The 2nd proposal in which water basin is suggested would help not only to collect the waste heat but to decrease in the cooling time.
Resumo:
Setup time reduction facilitate the flexibility needed for just-in-time production. An integrated steel mill with meltshop, continuous caster and hot rolling mill is often operated as decoupled processes. Setup time reduction provides the flexibility needed to reduce buffering, shorten lead times and create an integrated process flow. The interdependency of setup times, process flexibility and integration were analysed through system dynamics simulation. The results showed significant reductions of energy consumption and tied capital. It was concluded that setup time reduction in the hot strip mill can aid process integration and hence improve production economy while reducing environmental impact.
Resumo:
Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.
Resumo:
The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity.A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.
Resumo:
Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.
Resumo:
The surface failure characteristics of different work roll materials, i.e. High Speed Steel, High Chromium Iron and Indefinite Chill Iron, used in the finishing stands of a hot strip mill have been investigated using stereo microscopy, 3D optical profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that the surface failure mechanisms of work rolls for hot rolling are very complex, involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. Despite the differences in chemical composition and microstructure, the tribological response of the different work roll materials was found to be strongly dependent on the material microstructure and especially the presence and distribution of microstructural constituents, such as the different carbide phases and graphite (in the case of Indefinite Chill Iron). Cracking and chipping of the work roll surfaces, both having a negative impact on work roll wear, are strongly influenced by the presence of carbides, carbide networks and graphite in the work roll surface. Consequently, the amount of carbide forming elements as well as the manufacturing process must be controlled in order to obtain an optimised microstructure and a predictable wear rate.
Resumo:
The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.
Resumo:
The importance of investigating cost reduction in materials and components for solar thermal systems is crucial at the present time. This work focuses on the influence of two different heat exchangers on the performance of a solar thermal system. Both heat exchangers studied are immersed helically coiled, one made with corrugated stainless steel tube, and the other made with finned copper tube with smooth inner surface.A test apparatus has been designed and a simple test procedure applied in order to study heat transfer characteristics and pressure drop of both coils. Thereafter, the resulting experimental data was used to perform a parameter identification of the heat exchangers, in order to obtain a TRNSYS model with its corresponding numerical expression. Also a representative small-scale combisystem model was designed in TRNSYS, in order to study the influence of both heat exchangers on the solar fraction of the system, when working at different flow rates.It has been found that the highest solar fraction is given by the corrugated stainless steel coil, when it works at the lowest flow rate (100 l/hr). For any higher flow rate, the studied copper coil presents a higher solar fraction. The advantageous low flow performance of stainless steel heat exchanger turns out to be beneficial for the particular case of solar thermal systems, where it is well known that low flow collector loops lead to enhanced store stratification, and consequently higher solar fractions.Finally, an optimization of the stainless steel heat exchanger length is carried out, according to economic figures. For the given combisystem model and boundary conditions, the optimum length value is found between 10 and 12 m.
Resumo:
Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment. The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods. The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations. The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer. The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building. Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.
Resumo:
Increasing energy use has caused many environmental problems including global warming. Energy use is growing rapidly in developing countries and surprisingly a remarkable portion of it is associated with consumed energy to keep the temperature comfortable inside the buildings. Therefore, identifying renewable technologies for cooling and heating is essential. This study introduced applications of steel sheets integrated into the buildings to save energy based on existing technologies. In addition, the proposed application was found to have a considerable chance of market success. Also, satisfying energy needs for space heating and cooling in a single room by using one of the selected applications in different Köppen climate classes was investigated to estimate which climates have a proper potential for benefiting from the application. This study included three independent parts and the results related to each part have been used in the next part. The first part recognizes six different technologies through literature review including Cool Roof, Solar Chimney, Steel Cladding of Building, Night Radiative Cooling, Elastomer Metal Absorber, and Solar Distillation. The second part evaluated the application of different technologies by gathering the experts’ ideas via performing a Delphi method. The results showed that the Solar Chimney has a proper chance for the market. The third part simulated both a solar chimney and a solar chimney with evaporation which were connected to a single well insulated room with a considerable thermal mass. The combination was simulated as a system to estimate the possibility of satisfying cooling needs and heating needs in different climate classes. A Trombe-wall was selected as a sample design for the Solar Chimney and was simulated in different climates. The results implied that the solar chimney had the capability of reducing the cooling needs more than 25% in all of the studied locations and 100% in some locations with dry or temperate climate such as Mashhad, Madrid, and Istanbul. It was also observed that the heating needs were satisfied more than 50% in all of the studied locations, even for the continental climate such as Stockholm and 100% in most locations with a dry climate. Therefore, the Solar Chimney reduces energy use, saves environment resources, and it is a cost effective application. Furthermore, it saves the equipment costs in many locations. All the results mentioned above make the solar chimney a very practical and attractive tool for a wide range of climates.