961 resultados para Steady state solutions
Resumo:
The objective of the author's on-going research is to explore the feasibility of determining reliable in situ curves of shear modulus as a function of strain using the dynamic test. The purpose of this paper is limited to investigating what material stiffness is measured from a dynamic test, focusing on the harmonic excitation test. A one-dimensional discrete model with nonlinear material properties is used for this purpose. When a sinusoidal load is applied, the cross-correlation of signals from different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loops under steady-state conditions. The variables that contributed to changing the average slope of the stress-strain loop also influence the estimate of the wave velocity from cross-correlation. Copyright ASCE 2007.
Resumo:
Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.
Resumo:
Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a 'command steer' control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, 'active' steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range. © VC 2013 by ASME.
Resumo:
The problem of calculating the minimum lap or maneuver time of a nonlinear vehicle, which is linearized at each time step, is formulated as a convex optimization problem. The formulation provides an alternative to previously used quasi-steady-state analysis or nonlinear optimization. Key steps are: the use of model predictive control; expressing the minimum time problem as one of maximizing distance traveled along the track centerline; and linearizing the track and vehicle trajectories by expressing them as small displacements from a fixed reference. A consequence of linearizing the vehicle dynamics is that nonoptimal steering control action can be generated, but attention to the constraints and the cost function minimizes the effect. Optimal control actions and vehicle responses for a 90 deg bend are presented and compared to the nonconvex nonlinear programming solution. Copyright © 2013 by ASME.
Resumo:
Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.
Resumo:
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude¿frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier-based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases. © 1986-2012 IEEE.
Resumo:
A coupled-circuit model for the brushless doubly fed machine (BDFM) has been developed. The transformation of the model into the d-q axis form, ultimately in a synchronous reference frame in which machine currents and voltages have constant values in the steady state, has been carried out. A model-reduction technique is presented, which gives a concise representation of the 'nested-loop' rotor design using a single d-q pair. These models have been experimentally verified and give a convenient and accurate way of calculating the dynamic behaviour of a BDFM. The ability to represent the BDFM with a single d-q pair considerably simplifies the design of suitable controllers. © The Institution of Engineering and Technology 2013.
Resumo:
Silicon Carbide Bipolar Junction Transistors require a continuous base current in the on-state. This base current is usually made constant and is corresponding to the maximum collector current and maximum junction temperature that is foreseen in a certain application. In this paper, a discretized proportional base driver is proposed which will reduce, for the right application, the steady-state power consumption of the base driver. The operation of the proposed base driver has been verified experimentally, driving a 1200V/40A SiC BJT in a DC-DC boost converter. In order to determine the potential reduction of the power consumption of the base driver, a case with a dc-dc converter in an ideal electric vehicle driving the new European drive cycle has been investigated. It is found that the steady-state power consumption of the base driver can be reduced by approximately 63 %. The total reduction of the driver consumption is 2816 J during the drive cycle, which is slightly more than the total on-state losses for the SiC BJTs used in the converter. © 2013 IEEE.
Resumo:
The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.
Resumo:
This paper presents the design and testing of a 250 kW medium-speed Brushless Doubly-Fed Generator (Brushless DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and show the system's steady-state and dynamic performance. The medium-speed Brushless DFIG in combination with a simplified twostage gearbox promises a low-cost low-maintenance and reliable drive train for wind turbine applications.
Resumo:
An approach to designing a constrained output-feedback predictive controller that has the same small-signal properties as a pre-existing output-feedback linear time invariant controller is proposed. Systematic guidelines are proposed to select an appropriate (non-unique) realization of the resulting state observer. A method is proposed to transform a class of offset-free reference tracking controllers into the combination of an observer, steady-state target calculator and predictive controller. The procedure is demonstrated with a numerical example. © 2013 IEEE.
Resumo:
This study presents the performance analysis and testing of a 250 kW medium-speed brushless doubly-fed induction generator (DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and showthe system's steady-state and dynamic performance and grid low-voltage ride- through capability. The medium-speed brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drivetrain for wind turbine applications. © The Institution of Engineering and Technology 2013.
Resumo:
A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed approach combines three equivalent circuits including electric, magnetic and thermal models. Utilizing electric equivalent circuit makes it possible to apply static form of magnetic equivalent circuit, because the elapsed time to reach steady-state results in the dynamic form is too long for using in population-based design studies. The operating characteristics, which are necessary for evaluating the objective function and constraints values of the optimization problem, can be calculated using the presented approach considering iron loss, saturation, and geometrical details. The simulation results of a D-180 prototype BDFIG are compared with measured data in order to validate the developed model. © 1986-2012 IEEE.
Resumo:
We examine theoretically the transient displacement flow and density stratification that develops within a ventilated box after two localized floor-level heat sources of unequal strengths are activated. The heat input is represented by two non-interacting turbulent axisymmetric plumes of constant buoyancy fluxes B1 and B2 > B1. The box connects to an unbounded quiescent external environment of uniform density via openings at the top and base. A theoretical model is developed to predict the time evolution of the dimensionless depths λj and mean buoyancies δj of the 'intermediate' (j = 1) and 'top' (j = 2) layers leading to steady state. The flow behaviour is classified in terms of a stratification parameter S, a dimensionless measure of the relative forcing strengths of the two buoyant layers that drive the flow. We find that dδ1/dτ α 1/λ1 and dδ2/dτ α 1/λ2, where τ is a dimensionless time. When S 1, the intermediate layer is shallow (small λ1), whereas the top layer is relatively deep (large λ2) and, in this limit, δ1 and δ2 evolve on two characteristically different time scales. This produces a time lag and gives rise to a 'thermal overshoot', during which δ1 exceeds its steady value and attains a maximum during the transients; a flow feature we refer to, in the context of a ventilated room, as 'localized overheating'. For a given source strength ratio ψ = B1/B2, we show that thermal overshoots are realized for dimensionless opening areas A < Aoh and are strongly dependent on the time history of the flow. We establish the region of {A, ψ} space where rapid development of δ1 results in δ1 > δ2, giving rise to a bulk overturning of the buoyant layers. Finally, some implications of these results, specifically to the ventilation of a room, are discussed. © Cambridge University Press 2013.