917 resultados para Statistical mixture-design optimization
Resumo:
The Quadratic Minimum Spanning Tree Problem (QMST) is a version of the Minimum Spanning Tree Problem in which, besides the traditional linear costs, there is a quadratic structure of costs. This quadratic structure models interaction effects between pairs of edges. Linear and quadratic costs are added up to constitute the total cost of the spanning tree, which must be minimized. When these interactions are restricted to adjacent edges, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). AQMST and QMST are NP-hard problems that model several problems of transport and distribution networks design. In general, AQMST arises as a more suitable model for real problems. Although, in literature, linear and quadratic costs are added, in real applications, they may be conflicting. In this case, it may be interesting to consider these costs separately. In this sense, Multiobjective Optimization provides a more realistic model for QMST and AQMST. A review of the state-of-the-art, so far, was not able to find papers regarding these problems under a biobjective point of view. Thus, the objective of this Thesis is the development of exact and heuristic algorithms for the Biobjective Adjacent Only Quadratic Spanning Tree Problem (bi-AQST). In order to do so, as theoretical foundation, other NP-hard problems directly related to bi-AQST are discussed: the QMST and AQMST problems. Bracktracking and branch-and-bound exact algorithms are proposed to the target problem of this investigation. The heuristic algorithms developed are: Pareto Local Search, Tabu Search with ejection chain, Transgenetic Algorithm, NSGA-II and a hybridization of the two last-mentioned proposals called NSTA. The proposed algorithms are compared to each other through performance analysis regarding computational experiments with instances adapted from the QMST literature. With regard to exact algorithms, the analysis considers, in particular, the execution time. In case of the heuristic algorithms, besides execution time, the quality of the generated approximation sets is evaluated. Quality indicators are used to assess such information. Appropriate statistical tools are used to measure the performance of exact and heuristic algorithms. Considering the set of instances adopted as well as the criteria of execution time and quality of the generated approximation set, the experiments showed that the Tabu Search with ejection chain approach obtained the best results and the transgenetic algorithm ranked second. The PLS algorithm obtained good quality solutions, but at a very high computational time compared to the other (meta)heuristics, getting the third place. NSTA and NSGA-II algorithms got the last positions
Resumo:
The Multiobjective Spanning Tree is a NP-hard Combinatorial Optimization problem whose application arises in several areas, especially networks design. In this work, we propose a solution to the biobjective version of the problem through a Transgenetic Algorithm named ATIS-NP. The Computational Transgenetic is a metaheuristic technique from Evolutionary Computation whose inspiration relies in the conception of cooperation (and not competition) as the factor of main influence to evolution. The algorithm outlined is the evolution of a work that has already yielded two other transgenetic algorithms. In this sense, the algorithms previously developed are also presented. This research also comprises an experimental analysis with the aim of obtaining information related to the performance of ATIS-NP when compared to other approaches. Thus, ATIS-NP is compared to the algorithms previously implemented and to other transgenetic already presented for the problem under consideration. The computational experiments also address the comparison to two recent approaches from literature that present good results, a GRASP and a genetic algorithms. The efficiency of the method described is evaluated with basis in metrics of solution quality and computational time spent. Considering the problem is within the context of Multiobjective Optimization, quality indicators are adopted to infer the criteria of solution quality. Statistical tests evaluate the significance of results obtained from computational experiments