989 resultados para Statistical methodologies
Resumo:
Two types of ecological thresholds are now being widely used to develop conservation targets: breakpoint-based thresholds represent tipping points where system properties change dramatically, whereas classification thresholds identify groups of data points with contrasting properties. Both breakpoint-based and classification thresholds are useful tools in evidence-based conservation. However, it is critical that the type of threshold to be estimated corresponds with the question of interest and that appropriate statistical procedures are used to determine its location. On the basis of their statistical properties, we recommend using piecewise regression methods to identify breakpoint-based thresholds and discriminant analysis or classification and regression trees to identify classification thresholds.
Resumo:
Bayesian inference has been used to determine rigorous estimates of hydroxyl radical concentrations () and air mass dilution rates (K) averaged following air masses between linked observations of nonmethane hydrocarbons (NMHCs) spanning the North Atlantic during the Intercontinental Transport and Chemical Transformation (ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior) distribution of a parameter given data related to the parameter through a model and prior beliefs about the parameter distribution. Here, the model describes hydrocarbon loss through OH reaction and mixing with a background concentration at rate K. The Lagrangian experiment provides direct observations of hydrocarbons at two time points, removing assumptions regarding composition or sources upstream of a single observation. The estimates are sharpened by using many hydrocarbons with different reactivities and accounting for their variability and measurement uncertainty. A novel technique is used to construct prior background distributions of many species, described by variation of a single parameter . This exploits the high correlation of species, related by the first principal component of many NMHC samples. The Bayesian method obtains posterior estimates of , K and following each air mass. Median values are typically between 0.5 and 2.0 × 106 molecules cm−3, but are elevated to between 2.5 and 3.5 × 106 molecules cm−3, in low-level pollution. A comparison of estimates from absolute NMHC concentrations and NMHC ratios assuming zero background (the “photochemical clock” method) shows similar distributions but reveals systematic high bias in the estimates from ratios. Estimates of K are ∼0.1 day−1 but show more sensitivity to the prior distribution assumed.
Resumo:
A new technique is described for the analysis of cloud-resolving model simulations, which allows one to investigate the statistics of the lifecycles of cumulus clouds. Clouds are tracked from timestep-to-timestep within the model run. This allows for a very simple method of tracking, but one which is both comprehensive and robust. An approach for handling cloud splits and mergers is described which allows clouds with simple and complicated time histories to be compared within a single framework. This is found to be important for the analysis of an idealized simulation of radiative-convective equilibrium, in which the moist, buoyant, updrafts (i.e., the convective cores) were tracked. Around half of all such cores were subject to splits and mergers during their lifecycles. For cores without any such events, the average lifetime is 30min, but events can lengthen the typical lifetime considerably.
Resumo:
Recent analysis of the Arctic Oscillation (AO) in the stratosphere and troposphere has suggested that predictability of the state of the tropospheric AO may be obtained from the state of the stratospheric AO. However, much of this research has been of a purely qualitative nature. We present a more thorough statistical analysis of a long AO amplitude dataset which seeks to establish the magnitude of such a link. A relationship between the AO in the lower stratosphere and on the 1000 hPa surface on a 10-45 day time-scale is revealed. The relationship accounts for 5% of the variance of the 1000 hPa time series at its peak value and is significant at the 5% level. Over a similar time-scale the 1000 hPa time series accounts for 1% of itself and is not significant at the 5% level. Further investigation of the relationship reveals that it is only present during the winter season and in particular during February and March. It is also demonstrated that using stratospheric AO amplitude data as a predictor in a simple statistical model results in a gain of skill of 5% over a troposphere-only statistical model. This gain in skill is not repeated if an unrelated time series is included as a predictor in the model. Copyright © 2003 Royal Meteorological Society
Resumo:
The Representative Soil Sampling Scheme of England and Wales has recorded information on the soil of agricultural land in England and Wales since 1969. It is a valuable source of information about the soil in the context of monitoring for sustainable agricultural development. Changes in soil nutrient status and pH were examined over the period 1971-2001. Several methods of statistical analysis were applied to data from the surveys during this period. The main focus here is on the data for 1971, 1981, 1991 and 2001. The results of examining change over time in general show that levels of potassium in the soil have increased, those of magnesium have remained fairly constant, those of phosphorus have declined and pH has changed little. Future sampling needs have been assessed in the context of monitoring, to determine the mean at a given level of confidence and tolerable error and to detect change in the mean over time at these same levels over periods of 5 and 10 years. The results of a non-hierarchical multivariate classification suggest that England and Wales could be stratified to optimize future sampling and analysis. To monitor soil quality and health more generally than for agriculture, more of the country should be sampled and a wider range of properties recorded.
Resumo:
The paper discusses the observed and projected warming in the Caucasus region and its implications for glacier melt and runoff. A strong positive trend in summer air temperatures of 0.05 degrees C a(-1) is observed in the high-altitude areas providing for a strong glacier melt and continuous decline in glacier mass balance. A warming of 4-7 degrees C and 3-5 degrees C is projected for the summer months in 2071-2100 under the A2 and B2 emission scenarios respectively, suggesting that enhanced glacier melt can be expected. The expected changes in winter precipitation will not compensate for the summer melt and glacier retreat is likely to continue. However, a projected small increase in both winter and summer precipitation combined with the enhanced glacier melt will result in increased summer runoff in the currently glaciated region of the Caucasus (independent of whether the region is glaciated at the end of the twenty-first century) by more than 50% compared with the baseline period.
Resumo:
Heinz recently completed a comprehensive experiment in self-play using the FRITZ chess engine to establish the ‘decreasing returns’ hypothesis with specific levels of statistical confidence. This note revisits the results and recalculates the confidence levels of this and other hypotheses. These appear to be better than Heinz’ initial analysis suggests.
Resumo:
A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.