939 resultados para State-Dependent Immigration
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.
Resumo:
The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-κB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5′-GGGAAATTCC-3′) and Ig-κ B (5′-GGGACTTTCC-3′) but had a negligible effect on the dissociation from the palindromic target-κB binding site (5′-GGGAATTCCC-3′). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein–DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-κB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-κB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a KD of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.
Resumo:
Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of calcium-signaling pathways controlling EMT induction in cancer cells may therefore be an important therapeutic strategy for preventing metastases.
Resumo:
A defining characteristic of contemporary welfare governance in many western countries has been a reduced role for governments in direct provision of welfare, including housing, education, health and income support. One of the unintended consequences of devolutionary trends in social welfare is the development of a ‘shadow welfare state’ (Fairbanks, 2009; Gottschalk, 2000), which is a term used to describe the complex partnerships between statebased social protection, voluntarism and marketised forms of welfare. Coupled with this development, conditional workfare schemes in countries such as the United States, Canada, the UK and Australia are pushing more people into informal and semi-formal means of poverty survival (Karger, 2005). These transformations are actively reshaping welfare subjectivities and the role of the state in urban governance. Like other countries such as the US, Canada and the UK, the fringe lending sector in Australia has experienced considerable growth over the last decade. Large numbers of people on low incomes in Australia are turning to non-mainstream financial services, such as payday lenders, for the provision of credit to make ends meet. In this paper, we argue that the use of fringe lenders by people on low incomes reveals important theoretical and practical insights into the relationship between the mixed economy of welfare and the mixed economy of credit in poverty survival.
Resumo:
Involving the biopsy of an eight-cell embryo, PGD has been hailed as a means of making reproductive decisions without having to face the heart-wrenching decision to abort an affected foetus. However, controversy around the kinds of traits for which testing can be done, and who has access to the technology, has led to questions about the way in which the technology is developing. Women who are allowed to access in vitro fertilisation (IVF) services can currently also access PGD in limited circumstances.
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.
Resumo:
This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.
Resumo:
Eighteen breast cancer cell lines were examined for expression of markers of epithelial and fibroblastic differentiation: E-cadherin, desmoplakins, ZO- 1, vimentin, keratin and β1 and β4 integrins. The cell lines were distributed along a spectrum of differentiation from epithelial to fibroblastic phenotypes. The most well-differentiated, epithelioid cell lines contained proteins characteristic of desmosomal, adherens and tight junctions, were adherent to one another on plastic and in the basement membrane matrix Matrigel and were keratin-positive and vimentin-negative. These cell lines were all weakly invasive in an in vitro chemoinvasion assay. The most poorly-differentiated, fibroblastic cell lines were E-cadherin-, desmoplakin- and ZO-1-negative and formed branching structures in Matrigel. They were vimentin-positive, contained only low levels of keratins and were highly invasive in the in vitro chemoinvasion assay. Of all of the markers analyzed, vimentin expression correlated best with in vitro invasive ability and fibroblastic differentiation. In a cell line with unstable expression of vimentin, T47D(CO), the cells that were invasive were of the fibroblastic type. The differentiation markers described here may be useful for analysis of clinical specimens and could potentially provide a more precise measure of differentiation grade yielding more power for predicting prognosis.
Resumo:
Epidermal growth factor receptor (EGFR) levels predict a poor outcome in human breast cancer and are most commonly associated with proliferative effects of epidermal growth factor (EGF), with little emphasis placed on motogenic responses to EGF. We found that MDA-MB-231 human breast cancer cells elicited a potent chemotactic response despite their complete lack of a proliferative response to EGF. Antagonists of EGFR ligation, the EGFR kinase, phosphatidylinositol 3'-kinase, and phospholipase C, but not the mitogen- activated protein kinases (extracellular signal-regulated protein kinase 1 and 2), blocked MDA-MB-231 chemotaxis. These findings suggest that EGF may influence human breast cancer progression via migratory pathways, the signaling for which appears to be dissociated, at least in part, from the proliferative pathways.
Resumo:
This paper examines the use of Twitter for long-term discussions around Australian politics, at national and state levels, tracking two hashtags during 2012: #auspol, denoting national political topics, and #wapol, which provides a case study of state politics (representing Western Australia). The long-term data collection provides the opportunity to analyse how the Twitter audience responds to Australian politics: which themes attract the most attention and which accounts act as focal points for these discussions. The paper highlights differences in the coverage of state and national politics. For #auspol, a small number of accounts are responsible for the majority of tweets, with politicians invoked but not directly contributing to the discussion. In contrast, #wapol stimulates a much lower level of tweeting. This example also demonstrates that, in addition to citizen accounts, traditional participants within political debate, such as politicians and journalists, are among the active contributors to state-oriented discussions on Twitter.
Resumo:
The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.
Resumo:
Tricalcium aluminate, hydrocalumite and residual lime have been identified as reversion contributing compounds after the seawater neutralisation of bauxite refinery residues. The formation of these compounds during the neutralisation process is dependent on the concentration of residual lime, pH and aluminate concentrations in the residue slurry. Therefore, the effect of calcium hydroxide (CaOH2) in bauxite refinery liquors was analysed and the degree of reversion monitored. This investigation found that the dissolution of tricalcium aluminate, hydrocalumite and CaOH2 caused reversion and continued to increase the pH of the neutralised residue until a state of equilibrium was reached at a solution pH of 10.5. The dissolution mechanism for each compound has been described and used to demonstrate the implications that this has on reversion in seawater neutralised Bayer liquor. This investigation describes the limiting factors for the dissolution and formation of these trigger compounds as well as confirming the formation of Bayer hydrotalcite (mixture of Mg6Al2(OH)16(CO32-,SO42-)•xH2O and Mg8Al2(OH)12(CO32-,SO42-)•xH2O) as the primary mechanism for reducing reversion during the neutralisation process. This knowledge then allowed for a simple but effective method (addition of magnesium chloride or increased seawater to Bayer liquor ratio) to be devised to reduce reversion occurring after the neutralisation of Bayer liquors. Both methods utilise the formation of Bayer hydrotalcite to permanently (stable in neutralised residue) remove hydroxyl (OH-) and aluminate (Al(OH)4-) ions from solution.
Resumo:
To date, a wide range of methods has been used to measure physical activity in children and adolescents. These include self-report methods such as questionnaires, activity logs, and diaries as well as objective measures of physical activity such as direct observation, doubly labeled water, heart rate monitoring, accelerometers, and pedometers. The purpose of this review is to overview the methods currently being used to measure physical activity in children and adolescents. For each measurement approach, new developments and/or innovations are identified and discussed. Particular attention is given to the use of accelerometers and the calibration of accelerometer output to units of energy expenditure to developing children.