996 resultados para Spin components
Resumo:
The relative resistance of 15 winter barley, three winter wheat and three winter oat cultivars on the UK recommended list 2003 and two spring wheat cultivars on the Irish 2003 recommended list were evaluated using Microdochium nivale in detached leaf assays to further understand components of partial disease resistance (PDR) and Fusarium head blight (FHB) resistance across cereal species. Barley cultivars showed incubation periods comparable to, and latent periods longer than the most FHB resistant Irish and UK wheat cultivars evaluated. In addition, lesions on barley differed from those on wheat as they were not visibly chlorotic when placed over a light box until sporulation occurred, in contrast to wheat cultivars where chlorosis of the infected area occurred when lesions first developed. The pattern of delayed chlorosis of the infected leaf tissue and longer latent periods indicate that resistances are expressed in barley after the incubation period is observed, and that these temporarily arrest the development of mycelium and sporulation. Incubation periods were longer for oats compared to barley or wheat cultivars. However, oat cultivars differed from both wheat and barley in that mycelial growth was observed before obvious tissue damage was detected under macroscopic examination, indicating tolerance of infection rather than inhibition of pathogen development, and morphology of sporodochia differed, appearing less well developed and being much less abundant. Longer latent periods have previously been related to greater FHB resistance in wheat. The present results suggest the longer latent periods of barley and oat cultivars, than wheat, are likely to play a role in overall FHB resistance if under the same genetic control as PDR components expressed in the head. However the limited range of incubation and latent periods observed within barley and oat cultivars evaluated was in contrast with wheat where incubation and latent periods were shorter and more variable among genotypes. The significance of the various combinations of PDR components detected in the detached leaf assay as components of FHB resistance in each crop requires further investigation, particularly with regard to the apparent tolerance of infection in oats and necrosis in barley, after the incubation period is observed, associated with retardation of mycelial growth and sporulation.
Resumo:
Components of partial disease resistance (PDR) to fusarium head blight (FHB), detected in a seed-germination assay, were compared with whole-plant FHB resistance of 30 USA soft red winter wheat entries in the 2002 Uniform Southern FHB Nursery. Highly significant (P <0·001) differences between cultivars in the in vitro seed-germination assay inoculated with Microdochium majus were correlated to FHB disease incidence (r = -0·41; P <0·05), severity (r = -0·47; P <0·01), FHB index (r = -0·46; P <0·01), damaged kernels (r = -0·52; P <0·01), grain deoxynivalenol (DON) concentration (r = -0·40; P <0·05) and incidence/severity/kernel-damage index (ISK) (r = -0·45; P <0·01) caused by Fusarium graminearum. Multiple linear regression analysis explained a greater percentage of variation in FHB resistance using the seed-germination assay and the previously reported detached-leaf assay PDR components as explanatory factors. Shorter incubation periods, longer latent periods, shorter lesion lengths in the detached-leaf assay and higher germination rates in the seed-germination assay were related to greater FHB resistance across all disease variables, collectively explaining 62% of variation for incidence, 49% for severity, 56% for F. graminearum-damaged kernels (FDK), 39% for DON and 59% for ISK index. Incubation period was most strongly related to disease incidence and the early stages of infection, while resistance detected in the seed germination assay and latent period were more strongly related to FHB disease severity. Resistance detected using the seed-germination assay was notable as it related to greater decline in the level of FDK and a smaller reduction in DON than would have been expected from the reduction in FHB disease assessed by visual symptoms.
Resumo:
Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P
Resumo:
Adrenomedullin (AM) and intermedin (IMD; adrenomedulln-2) are vasodilator peptides related to calcitonin gene-related peptide (CGRP). The actions of these peptides are mediated by the calcitonin receptor-like receptor (CLR) in association with one of three receptor activity-modifying proteins. CGRP is selective for CLR/receptor activity modifying protein (RAMP)1, AM for CLR/RAMP2 and -3, and IMD acts at both CGRP and AM receptors. In a model of pressure overload induced by inhibition of nitric-oxide synthase, up-regulation of AM was observed previously in cardiomyocytes demonstrating a hypertrophic phenotype. The current objective was to examine the effects of blood pressure reduction on cardiomyocyte expression of AM and IMD and their receptor components. Nomega-nitro-L-arginine methyl ester (L-NAME) (35 mg/kg/day) was administered to rats for 8 weeks, with or without concurrent administration of hydralazine (50 mg/kg/day) and hydrochlorothiazide (7.5 mg/kg/day). In left ventricular cardiomyocytes from L-NAME-treated rats, increases (-fold) in mRNA expression were 1.6 (preproAM), 8.4 (preproIMD), 3.4 (CLR), 4.1 (RAMP1), 2.8 (RAMP2), and 4.4 (RAMP3). Hydralazine/hydrochlorothiazide normalized systolic blood pressure (BP) and abolished mRNA up-regulation of hypertrophic markers sk-alpha-actin and BNP and of preproAM, CLR, RAMP2, and RAMP3 but did not normalize cardiomyocyte width nor preproIMD or RAMP1 mRNA expression. The robust increase in IMD expression indicates an important role for this peptide in the cardiac pathology of this model but, unlike AM, IMD is not associated with pressure overload upon the myocardium. The concordance of IMD and RAMP1 up-regulation indicates a CGRP-type receptor action; considering also a lack of response to BP reduction, IMD may, like CGRP, have an anti-ischemic function.
Resumo:
The triple-differential cross section for ionization of a heavy atom is shown to depend on the spin of the incident electron even if this is polarized entirely parallel or antiparallel to its direction of propagation, the atom is unpolarized, and the spins of the ejected electrons are not resolved. Quantitative predictions for the spin asymmetry are presented in a relativistic distorted-wave Born approximation. Simple physical models are introduced to understand both these results and further symmetry properties involving the reversal of a spatial momentum component also.