958 resultados para Spatially Explicit Simulations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a novel method to simulate hydrated macromolecules with a dielectric continuum representation of the surrounding solvent. In our approach, the interaction between the solvent and the molecular degrees of freedom is described by means of a polarization density free energy functional which is minimum at electrostatic equilibrium. After a pseudospectral expansion of the polarization and a discretization of the functional, we construct the equations of motion for the system based on a Car-Parrinello technique. In the limit of the adiabatic evolution of the polarization field variables, our method provides the solution of the dielectric continuum problem "on the fly," while the molecular coordinates are propagated. In this first study, we show how our dielectric continuum molecular dynamics method can be successfully applied to hydrated biomolecules, with low cost compared to free energy simulations with explicit solvent. To our knowledge, this is the first time that stable and conservative molecular dynamic simulations of solutes can be performed for a dielectric continuum model of the solvent. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results of classical molecular-dynamics simulations of bcc and beta-Ta thin films. Thermal PVD film growth, surface roughness, argon ion bombardment, phase stability and transformation, vacancy and adatom diffusion, and thermal relaxation kinetics are discussed. Distinct differences between the two structures are observed, including a complex vacancy diffusion mechanism in beta-Ta. Embedded atom method potentials, which were fitted to bcc properties, have been used to model the Ta-Ta interactions. In order to verify the application of these potentials to the more complex beta-Ta structure, we have also performed density functional theory calculations. Results and implications of these calculations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of palladium clusters, generated with the electrochemical scanning tunneling microscope, have been investigated both by experiments and by computer simulations. The clusters are found to be larger and more stable if the tip is moved further towards the electrode surface in the generation process. The simulations suggest that the larger clusters consist of a palladium - gold mixture, which is more stable than pure palladium. Dissolution of the clusters occurs from the edges rather than layer by layer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamical method for simulating steady-state conduction in atomic and molecular wires is presented which is both computationally and conceptually simple. The method is tested by calculating the current-voltage spectrum of a simple diatomic molecular junction, for which the static Landauer approach produces multiple steady-state solutions. The dynamical method quantitatively reproduces the static results and provides information on the stability of the different solutions. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First-principles calculations of the Sigma 5(310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However, numerical results show a striking equivalence between the alkali metal Na and the semimetal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unraveled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the net reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of harmonic generation in the interaction of short laser pulses with solid targets holds the promise for the production of intense attosecond pulses. Using the three dimensional code ILLUMINATION we have performed simulations pertaining to an experimentally realizable parameter range by high power laser systems to become available in the near future. The emphasis of the investigation is on the coherent nature of the emission. We studied the influence of the plasma scale length on the harmonic efficiency, angular distribution and the focusability using a post processing scheme in which the far-field of the emission is calculated. It is found that the presence of an extended density profile reduces significantly the transverse coherence length of the emitted XUV light. The different stages of the interaction for two particular cases can be followed with the help of movies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the capacity of multiple-input multiple-output (MIMO) wireless communication systems over spatially correlated Rayleigh distributed flat fading channels with complex Gaussian additive noise. Specifically, we derive the probability density function of the mutual information between transmitted and received complex signals of MIMO systems. Using this density we derive the closed-form ergodic capacity (mean), delay-limited capacity, capacity variance and outage capacity formulas for spatially correlated channels and then evaluate these formulas numerically. Numerical results show how the channel correlation degrades the capacity of MIMO communication systems. We also show that the density of mutual information of correlated/uncorrelated MIMO systems can be approximated by a Gaussian density with derived mean and variance, even for a finite number of inputs and outputs.