932 resultados para Spatial analysis
Resumo:
All trees with diameter at breast height dbh >= 10.0 cm were stem-mapped in a "terra firme" tropical rainforest in the Brazilian Amazon, at the EMBRAPA Experimental Site, Manaus, Brazil. Specifically, the relationships of tree species with soil properties were determined by using canonical correspondence analyses based on nine soil variables and 68 tree species. From the canonical correspondence analyses, the species were grouped into two groups: one where species occur mainly in sandy sites, presenting low organic matter content; and another one where species occur mainly in dry and clayey sites. Hence, we used Ripley's K function to analyze the distribution of species in 32 plots ranging from 2,500 m(2) to 20,000 m(2) to determine whether each group presents some spatial aggregation as a soil variations result. Significant spatial aggregation for the two groups was found only at over 10,000 m(2) sampling units, particularly for those species found in clayey soils and drier environments, where the sampling units investigated seemed to meet the species requirements. Soil variables, mediated by topographic positions had influenced species spatial aggregation, mainly in an intermediate to large distances varied range (>= 20 m). Based on our findings, we conclude that environmental heterogeneity and 10,000 m(2) minimum sample unit sizes should be considered in forest dynamic studies in order to understand the spatial processes structuring the "terra firme" tropical rainforest in Brazilian Amazon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Climatic factors directly influence growth and productivity of plants inside greenhouses, where temperature can be considered one of the major parameter in this context. Thus, the aim of this research was to develop a low cost device for thermal sensing and data acquisition, and use it in data collection and analysis of spatial variability of temperature inside a greenhouse with tropical climate. The developed equipment for thermal measurements showed a high degree of accuracy and fast responses in measurements, proving its efficiency. The data analysis interpretations were made from the elaborations of variograms and of tridimensional maps generated by a geostatistical software. The processed data analysis presented that a greenhouse without thermal control has spatial variations of air temperature, both in the sampled horizontals layers as in the three analyzed vertical columns, presenting variations of up to 3.6 ºC in certain times.
Resumo:
The emphasis in this research is to evaluate the spatial distribution of the precipitation using a geostatistics approach. Seasonal time scales records considering DJF, MAM, JJA e SON periods performed the analysis. Procedures to evaluate the variogram selection and to produce kriging maps were performed in a GIS environment (ArcGIS®). The results showed that kriging method was very suitable to detect both large changes in the whole area as those local small and subtle changes. Kriging demonstrated be a powerful statistical interpolation method that might be very useful in regions with great complexity in climatology and geomorphology.
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.
Resumo:
Background: Cancer is the second leading cause of death in Argentina, and there is little knowledge about its incidence. The first study based on population-based cancer registry described spatial incidence and indicated that there existed at least county-level aggregation. The aim of the present work is to model the incidence patterns for the most incidence cancer in Córdoba Province, Argentina, using information from the Córdoba Cancer Registry by performing multilevel mixed model approach to deal with dependence and unobserved heterogeneity coming from the geo-reference cancer occurrence. Methods: Standardized incidence rates (world standard population) (SIR) by sex based on 5-year age groups were calculated for 109 districts nested on 26 counties for the most incidence cancers in Cordoba using 2004 database. A Poisson twolevel random effect model representing unobserved heterogeneity between first level-districts and second level-counties was fitted to assess the spatial distribution of the overall and site specific cancer incidence rates. Results: SIR cancer at Córdoba province shown an average of 263.53±138.34 and 200.45±98.30 for men and women, respectively. Considering the ratio site specific mean SIR to the total mean, breast cancer ratio was 0.25±0.19, prostate cancer ratio was 0.12±0.10 and lower values for lung and colon cancer for both sexes. The Poisson two-level random intercepts model fitted for SIR data distributed with overdispersion shown significant hierarchical structure for the cancer incidence distribution. Conclusions: a strong spatial-nested effect for the cancer incidence in Córdoba was observed and will help to begin the study of the factors associated with it.
Resumo:
This study was undertaken in a 1566 ha drainage basin situated in an area with cuesta relief in the state of São Paulo, Brazil. The objectives were: 1) to map the maximum potential soil water retention capacity, and 2) to simulate the depth of surface runoff in each geographical position of the area based on a typical rainfall event. The database required for the development of this research was generated in the environment of the geographical information system ArcInfo v.10.1. Undeformed soil samples were collected at 69 points. The ordinary kriging method was used in the interpolation of the values of soil density and maximum potential soil water retention capacity. The spherical model allowed for better adjustment of the semivariograms corresponding to the two soil attributes for the depth of 0 to 20 cm, while the Gaussian model enabled a better fit of the spatial behavior of the two variables for the depth of 20 to 40 cm. The simulation of the spatial distribution revealed a gradual increase in the depth of surface runoff for the rainfall event taken as example (25 mm) from the reverse to the peripheral depression of the cuesta (from west to east). There is a positive aspect observed in the gradient, since the sites of highest declivity, especially those at the front of the cuesta, are closer to the western boundary of the watershed where the lowest depths of runoff occur. This behavior, in conjunction with certain values of erodibility and depending on the land use and cover, can help mitigate the soil erosion processes in these areas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. Distance sampling is a widely used technique for estimating the size or density of biological populations. Many distance sampling designs and most analyses use the software Distance. 2. We briefly review distance sampling and its assumptions, outline the history, structure and capabilities of Distance, and provide hints on its use. 3. Good survey design is a crucial prerequisite for obtaining reliable results. Distance has a survey design engine, with a built-in geographic information system, that allows properties of different proposed designs to be examined via simulation, and survey plans to be generated. 4. A first step in analysis of distance sampling data is modeling the probability of detection. Distance contains three increasingly sophisticated analysis engines for this: conventional distance sampling, which models detection probability as a function of distance from the transect and assumes all objects at zero distance are detected; multiple-covariate distance sampling, which allows covariates in addition to distance; and mark–recapture distance sampling, which relaxes the assumption of certain detection at zero distance. 5. All three engines allow estimation of density or abundance, stratified if required, with associated measures of precision calculated either analytically or via the bootstrap. 6. Advanced analysis topics covered include the use of multipliers to allow analysis of indirect surveys (such as dung or nest surveys), the density surface modeling analysis engine for spatial and habitat-modeling, and information about accessing the analysis engines directly from other software. 7. Synthesis and applications. Distance sampling is a key method for producing abundance and density estimates in challenging field conditions. The theory underlying the methods continues to expand to cope with realistic estimation situations. In step with theoretical developments, state-of- the-art software that implements these methods is described that makes the methods accessible to practicing ecologists.
Resumo:
The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.
Resumo:
Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may violate assumptions of ‘‘local’’ perturbation metrics such as sensitivities and elasticities, and (2) forecasting not only asymptotic rates of spatial spread, as is usually done, but also transient spatial dynamics in the early stages of invasion. We developed an invasion model for the Diaprepes root weevil (DRW; Diaprepes abbreviatus [Coleoptera: Curculionidae]), a generalist herbivore that has invaded citrus-growing regions of the United States. We synthesized data on DRW demography and dispersal and generated predictions for asymptotic and transient peak invasion speeds, accounting for parameter uncertainty. We quantified the contributions of each parameter toward invasion speed using a ‘‘global’’ perturbation analysis, and we contrasted parameter contributions during the transient and asymptotic phases. We found that the asymptotic invasion speed was 0.02–0.028 km/week, although the transient peak invasion speed (0.03– 0.045 km/week) was significantly greater. Both asymptotic and transient invasions speeds were most responsive to weevil dispersal distances. However, demographic parameters that had large effects on asymptotic speed (e.g., survival of early-instar larvae) had little effect on transient speed. Comparison of the global analysis with lower-level elasticities indicated that local perturbation analysis would have generated unreliable predictions for the responsiveness of invasion speed to underlying parameters. Observed range expansion in southern Florida (1992–2006) was significantly lower than the invasion speed predicted by the model. Possible causes of this mismatch include overestimation of dispersal distances, demographic rates, and spatiotemporal variation in parameter values. This study demonstrates that, when parameter uncertainty is large, as is often the case, global perturbation analyses are needed to identify which points in the life cycle should be targets of management. Our results also suggest that effective strategies for reducing spread during the asymptotic phase may have little effect during the transient phase. Includes Appendix.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Temporal, spatial and diel variation in the distribution and abundance of organisms is an inherent property of ecological systems. The present study describes these variations and the composition of decapod larvae from the surface waters of St Paul`s Rocks. The expeditions to the archipelago were carried out in April, August and November 2003, March 2004 and May 2005. Surface plankton samples were collected during the morning and dusk periods, inside the inlet and in increasing distances around the archipelago (similar to 150, 700 and 1500 m). The identification resulted in 51 taxa. Seven species, six genera and larvae of the families Pandalidae and Portunidae were identified for the first time in the area. The mean larval density varied from zero to 150.2 +/- 69.6 individuals 100 m(-3) in the waters surrounding the archipelago and from 1.7 +/- 3.0 to 12,827 +/- 15,073 individuals 100 m(-3) inside the inlet. Significant differences on larval density were verified between months and period of the day, but not among the three sites around the archipelago. Cluster and non-metric multidimensional scaling analysis indicated that the decapod larvae community was divided into benthic and pelagic assemblages. Indicator species analysis (ISA) showed that six Brachyura taxa were good indicators for the inlet, while three sergestids were the main species from the waters around the archipelago. These results suggest that St Paul`s Rocks can be divided into two habitats, based on larval composition, density and diversity values: the inlet and the waters surrounding the archipelago.
Resumo:
The aim of this study was to analyze the distribution and abundance of the fish fauna of Palmas bay on Anchieta Island in southeastern Brazil. Specimens were caught in the summer and winter of 1992, using an otter trawl at three locations in the bay. The specimens were caught in both the nighttime and daytime. Data on the water temperature and salinity were recorded for the characterization of the predominant water mass in the region, and sediment samples were taken for granulometric analysis. A total of 7 656 specimens (79 species), with a total weight of approximately 300 kg, were recorded. The most abundant species were Eucinostomus argenteus, Ctenosciaena gracilicirrhus, Haemulon steindachneri, Eucinostomus gula and Diapterus rhombeus, which together accounted for more than 73% of the sample. In general, the ecological indices showed no differences in the composition of species for the abiotic variables analyzed. The multivariate analysis showed that the variations in the distribution of the fish fauna were mainly associated with intra-annual differences in temperature and salinity, resulting from the presence of South Atlantic Central Water (SACW) in the area during the summer. The analysis also showed an association with the type of bottom and a lesser association with respect to the night/day periods.
Resumo:
Sediment cores are an essential tool for the analysis of the dynamics of mangrove succession. Coring was used to correlate changes in depositional environments and lateral sedimentary facies with discrete stages of forest succession at the Cananeia-Iguape Coastal System in southeastern Brazil. A local level successional pattern was examined based on four core series T1) a sediment bank; T2) a smooth cordgrass Spartina alterniflora bank; T3) an active mangrove progradation fringe dominated by Laguncularia racemosa, and; T4) a mature mangrove forest dominated by Avicennia schaueriana. Cores were macroscopically described in terms of color, texture, sedimentary structure and organic components. The base of all cores exhibited a similar pattern suggesting common vertical progressive changes in depositional conditions and subsequent successional colonization pattern throughout the forest. The progradation zone is an exposed bank, colonized by S. alterniflora. L. racemosa, replaces S. alterniflora as progradation takes place. As the substrate consolidates A. schaueriana replaces L. racemosa and attains the greatest structural development in the mature forest. Cores collected within the A. schaueriana dominated stand contained S. alterniflora fragments near the base, confirming that a smooth cordgrass habitat characterized the establishment and early seral stages. Cores provide a reliable approach to describe local-level successional sequences in dynamic settings subject to drivers operating on multiple temporal and spatial scales where spatial heterogeneity can lead to multiple equilibria and where similar successional end-points may be reached through convergent paths.