975 resultados para Spark ignition engines.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the experience of the new design of using impinging jet spray columns for scrubbing hydrogen sulfide from biogas that has been developed by Indian Institute of Science and patented. The process uses a chelated polyvalent metal ion which oxidizes the hydrogen sulfide to sulfur as a precipitate. The sulfur generated is filtered and the scrubbing liquid recycled after oxidation. The process involves in bringing contact the sour gas with chelated liquid in the spray columns where H2S reacts with chelated Fe3+ and precipitates as sulfur, whereas Fe3+ gets reduced to Fe2+. Fe2+ is regenerated to Fe3+ by reaction of oxygen in air in a separate packed column. The regenerated liquid is recirculated. Sulfur is filtered and separated as a byproduct. The paper presents the experience in using the spray towers for hydrogen sulfide removal and further use of the clean gas for generating power using gas engines. The maximum allowable limit of H2S for the gas engine is 200 ppm (v/v) in order to prevent any corrosion of engine parts and fouling of the lubricating oil. With the current ISET process, the hydrogen sulfide from the biogas is cleaned to less than 100 ppm (v/v) and the sweet gas is used for power generation. The system is designed for 550 NM3/hr of biogas and inlet H2S concentration of 2.5 %. The inlet concentration of the H2S is about 1 - 1.5 % and average measured outlet concentration is about 30 ppm, with an average gas flow of about 300 - 350 NM3/hr, which is the current gas production rate. The sweet gas is used for power generation in a 1.2 MWe V 12 engine. The average power generation is about 650 - 750 kWe, which is the captive load of the industry. The plant is a CHP (combined heat power) unit with heat from the cylinder cooling and flue being recovered for hot water and steam generation respectively. The specific fuel consumption is 2.29 kWh/m(3) of gas. The system has been in operation for more than 13,000 hours in last one year in the industry. About 8.4 million units of electricity has been generated scrubbing about 2.1 million m3 of gas. Performance of the scrubber and the engine is discussed at daily performance level and also the overall performance with an environment sustenance by precipitating over 27 tons of sulfur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of microstructure and phase formation in equiatomic Ti20Fe20Ni20Co20Cu20 high entropy alloy synthesised by conventional arc melting followed with suction casting and ball milling with spark plasma sintering route is distinctly different. The cast microstructure exhibits one body centre cubic and two face centre cubic high entropy phases based on titanium, cobalt and copper respectively along with a eutectic containing Ti2Ni type Laves phase. On the contrary, spinodal decomposed microstructure consisting of cobalt and copper solid solution is obtained in the sintered sample. However, long term annealing of cast sample at 950 degrees C reveals a eutectoid transformation with different phases than the cast sample. The aforementioned observations are discussed using CALPHAD thermodynamical approach and available literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atomization characteristics of blends of bioderived camelina hydrogenated renewable jet (HRJ) alternative fuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines are described. The spray tests are conducted in a spray test facility at six different test flow conditions to compare the atomization of alternative fuels with that of Jet A-1. The fuel sprays are characterized in terms of fuel discharge, spray cone angle, drop size distribution, and spray patternation. The measurements of spray drop size distribution are obtained using laser diffraction based Spraytec equipment. The characteristics of fuel discharge and cone angle of alternative fuel sprays do not show any changes from that of Jet A-1 sprays. The characteristics of spray drop size, evaluated in terms of the variation of mean drop size along the spray axis, for the alternative fuel sprays remain unaffected by the variation in fuel properties between the alternative fuels and Jet A-1. The measurements on spray patternation, obtained using a mechanical patternator at a distance 5.1 cm from the atomizer exit, show an enhanced fuel concentration in the vicinity of spray axis region for the alternative fuel sprays discharging from the dual-orifice atomizer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pressure-swirl nozzles (simplex nozzles) are used in various field applications such as aero-engines, power generation, spray painting and agricultural irrigation. For this particular nozzle, research in the past decade has dealt with the development of numerical models for predicting droplet distribution profiles. Although these results have been valuable, the experimental results have been contradictory, therefore fundamental understanding of the influence of properties in nozzle is important. This paper experimentally investigates the effect of surfactants on breakup and coalescence. Since most of the fuels and biofuels have low surface tension compared to water, a comparative analysis between a surfactant solution and a liquid fuel is imperative. For this experimental study, a simplex nozzle characterized as flow number 0.4 will be utilized. The injection pressures will range from 0.3 - 4Mpa while altering the surface tension from 72 to 28mN/m. By applying Phase Doppler Particle Anemometry (PDPA) which is a non-intrusive laser diagnostic technique, the differences in spray characteristics due to spray surface tension can be highlighted. The average droplet diameter decreases for a low surface tension fluid in the axial direction in comparison to pure water. The average velocity of droplets is surprisingly lower in the same spray zone. Measurements made in the radial direction show no significant changes, but at the locations close to the nozzle, water droplets have larger diameter and velocity. The results indicate the breakup and coalescence regimes have been altered when surface tension is lowered. A decrease in surface tension alters the breakup length while increasing the spray angle. Moreover, higher injection pressure shortens the breakup length and decrease in overall diameter of the droplets. By performing this experimental study the fundamentals of spray dynamics, such as spray formation, liquid breakup length, and droplet breakup regimes can be observed as a function of surface tension and how a surrogate fuel compares with a real fuel for experimental purposes. This knowledge potentially will lead to designing a better atomizer or new biofuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentration of Nitrogen Oxides (NOx) in engines which use biodiesel as fuel is higher compared to conventional diesel engine exhaust. In this paper, an attempt has been made to treat this exhaust using a combination of High frequency AC (HFAC) plasma and an industrial waste, Red Mud which shows proclivity towards Nitrogen dioxide (NO2) adsorption. The high frequency AC source in combination with the proposed compact double dielectric plasma reactors is relatively more efficient in converting Nitric Oxide (NO) to NO2. It has been shown that the plasma treated gas enhances the activity of red mud as an adsorbent/catalyst and about 60-72% NOx removal efficiency was observed at a specific energy of 250 J/L. The advantage in this method is the cost effectiveness and abundant availability of the waste red mud in the industry. Further, power estimation studies were carried out using Manley's equation for the two reactors employed in the experiment and a close agreement between experimental and predicted powers was observed. (C) 2015 The Authors. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the combustion characteristics of fuel droplets laden with energetic nanoparticles (NP) is pivotal for lowering ignition delay, reducing pollutant emissions and increasing the combustion efficiency in next generation combustors. In this study, first we elucidate the feedback coupling between two key interacting mechanisms, namely, secondary atomization and particle agglomeration; that govern the effective mass fraction of NPs within the droplet. Second, we show how the initial NP concentration modulates their relative dominance leading to a masterslave configuration. Secondary atomization of novel nanofuels is a crucial process since it enables an effective transport of dispersed NPs to the flame (a pre-requisite condition for NPs to burn). Contrarily, NP agglomeration at the droplet surface leads to shell formation thereby retaining NPs inside the droplet. In particular, we show that at dense concentrations shell formation (master process) dominates over secondary atomization (slave) while at dilute particle loading it is the high frequency bubble ejections (master) that disrupt shell formation (slave) through its rupture and continuous outflux of NPs. This results in distinct combustion residues at dilute and dense concentrations, thereby providing a method of manufacturing flame synthesized microstructures with distinct morphologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite being highly bioactive and biocompatible, the limitations of monolithic hydroxyapatite (HA) include extremely low fracture toughness, poor electrical conductivity. While addressing these issues, the present study demonstrates how CaTiO3 (CT) addition to HA can be utilized to obtain a combination of long crack fracture toughness (1.7 MPa m(1/2) SEVNB technique) and flexural strength of 98-155 MPa (3-point bending) and a moderate tensile strength (diametral compression) of 17-36 MPa. The enhancement in fracture resistance in spark plasma sintered HA-CT composites has been explained in reference to the observed twin morphology. TEM reveals the presence of twins in CT grains due to 1800 rotation about 101]. The measured properties along with our earlier reports on biocompatibility and electrical properties make HA-CT suitable for bone tissue engineering applications. When compared with other competing HA-based biocomposites, HA-CT composites are found to have a better combination of properties useful for medium load bearing implant applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline CoCrFeNi high entropy alloy, synthesized by mechanical alloying followed by spark plasma sintering, demonstrated extremely sluggish grain growth even at very high homologous temperature of 0.68 T-m (900 degrees C) for annealing duration of 600 h. Mechanically alloyed powder had carbon and oxygen as impurities, which in turn led to the formation of two-phase mixture of FCC and Cr-rich carbide with fine distribution of Cr-rich oxide during spark plasma sintering. Sluggish grain growth is attributed to the Zener pinning effect from the fine dispersion of oxide, mutual retardation of grain boundaries in the presence of two phases, and sluggish diffusivity because of cooperative diffusion of multi-principle elements. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoacoustic instability in a lean premixed combustor is a major impediment towards reliable operation of gas turbine engines for both aerospace and land based applications. In this communication, we investigate the following concept: in a laboratory combustor, could the otherwise static swirler be actuated to a rotary motion, such that the higher intensity turbulence and higher swirl number generated in the flame stabilization region might alter the flame position, structure and thereby assist in mitigating thermoacoustic instabilities? Results obtained using microphone and high speed imaging, show prominent reductions in the amplitudes of the first mode of the thermoacoustically unstable flame, with increased rotation rate of the swirler. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current global energy scenario and the environmental deterioration aspect motivates substituting fossil fuel with a renewable energy resource - especially transport fuel. This paper reviews the current status of trending biomass to liquid (BTL) conversion processes and focuses on the technological developments in Fischer Tropsch (FT) process. FT catalysts in use, and recent understanding of FT kinetics are explored. Liquid fuels produced via FT process from biomass derived syngas promises an attractive, clean, carbon neutral and sustainable energy source for the transportation sector. Performance of the FT process with various catalysts, operating conditions and its influence on the FT products are also presented. Experience from large scale commercial installations of FT plants, primarily utilizing coal based gasifiers, are discussed. Though biomass gasification plants exist for power generation via gas engines with power output of about 2 MWe; there are only a few equivalent sized FT plants for biomass derived syngas. This paper discusses the recent developments in conversion of biomass to liquid (BTL) transportation fuels via FT reaction and worldwide attempts to commercialize this process. All the data presented and analysed here have been consolidated from research experiences at laboratory scale as well as from industrial systems. Economic aspects of BTL are reviewed and compared. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value N-d, which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and Nox emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the N-d value has significant influences on the distributions of temperature and char burnout. There exists an optimal N-d value under which the carbon content in the char and the Nox emission is relatively low. The coal ignition and Nox emission in the utilized power station are improved after retrofitting the burners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental investigations on the ignition and combustion stabilization of kerosene with pilot hydrogen in Mach 2.5 airflows were conducted using two test combustors, with cross sections of 30.5 x 30 and 51 x 70 mm, respectively. Various integrated modules, including the combinations of different pilot injection schemes and recessed cavity flameholders with different geometries, were designed and tested. The stagnation pressure of vitiated air varied within the range of 1.1-1.8 NiPa, while the stagnation temperature varied from 1500 to 1900 K. Specifically, effects of the pilot hydrogen injection scheme, cavity geometry, and combustor scaling on the minimally required pilot hydrogen equivalence ratio were systematically examined. Results indicated that the cavity depth and length had significant effects on the ignition and flameholding, whereas the slanted angle of the aft wall was relatively less important. Two cavities in tandem were shown to be a more effective flameholding mechanism than that with a single cavity. The minimally required pilot hydrogen equivalence ratio for kerosene ignition and stable combustion was found to be as low as 0.02. Furthermore, combustion efficiency of 80% was demonstrated to be achievable for kerosene with the simultaneous use of pilot hydrogen and a recessed cavity to promote the ignition and global burning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

炸药装药发射安全性模拟实验表明,炮弹炸药装药底隙是诱发膛炸的最危险因素,证实“快速压缩间隙气体加热炸药”是炸药装药撞击起爆的最重要机制。本文分析炸药装药撞击起爆模拟实验,在忽略化学反应的条件下,建立了含气体间隙炸药装药撞击起爆一维模型,给出了描述低速气炮实验中气隙温度分布的方程及参数,即炸药最高温度的控制方程及参数。这些控制参数为气体的比热比、初始相对温度、气体压缩比、气体散热与输入功率比、界面传热系数比。