929 resultados para Sorghum -- Somatic embryogenesis.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models. © 2014 Springer Science+Business Media New York.
Resumo:
The primary purpose of spermatozoa is to deliver the paternal DNA to the oocyte at fertilization. During the complex events of fertilization, if the spermatozoon penetrating the oocyte contains compromised or damaged sperm chromatin, the subsequent progression of embryogenesis and foetal development may be affected. Variation in sperm DNA damage and protamine content in ejaculated spermatozoa was reported in the cattle, with potential consequences to bull fertility. Protamines are sperm-specific nuclear proteins that are essential to packaging of the condensed paternal genome in spermatozoa. Sperm DNA damage is thought to be repaired during the process of protamination. This study investigates the potential correlation between sperm protamine content, sperm DNA damage and the subsequent relationships between sperm chromatin and commonly measured reproductive phenotypes. Bos indicus sperm samples (n = 133) were assessed by two flow cytometric methods: the sperm chromatin structure assay (SCSA) and an optimized sperm protamine deficiency assay (SPDA). To verify the SPDA assay for bovine sperm protamine content, samples collected from testis, caput and cauda epididymidis were analyzed. As expected, mature spermatozoa in the cauda epididymidis had higher protamine content when compared with sperm samples from testis and caput epididymidis (p < 0.01). The DNA fragmentation index (DFI), determined by SCSA, was positively correlated (r = 0.33 ± 0.08, p < 0.05) with the percentage of spermatozoa that showed low protamine content using SPDA. Also, DFI was negatively correlated (r = -0.21 ± 0.09, p < 0.05) with the percentage of spermatozoa with high protamine content. Larger scrotal circumference contributes to higher sperm protamine content and lower content of sperm DNA damage (p < 0.05). In conclusion, sperm protamine content and sperm DNA damage are closely associated. Protamine deficiency is likely to be one of the contributing factors to DNA instability and damage, which can affect bull fertility. © 2014 American Society of Andrology and European Academy of Andrology.
Resumo:
The identification of "stay-green" in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate "stay-green"-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of "stay-green" expression on grain quality under extreme physiological stress is limited. This study examines impacts of "stay-green"-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without "stay-green"-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the "stay-green"-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with "stay-green"-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the "stay-green"-like traits potentially useful in ensuring food security. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Graminicolous Downy Mildew (GDM) diseases caused by the genera Peronosclerospora (13 spp.) and Sclerophthora (6 spp. and 1 variety) are poorly studied but destructive diseases of major crops such as corn, sorghum, sugarcane and other graminoids. Eight of the 13 described Peronosclerospora spp. are able to infect corn. In particular, P. philippinensis (= P. sacchari), P. maydis, P. heteropogonis, and S. rayssiae var. zeae cause major losses in corn yields in tropical Asia. In 2012 a new species, P. australiensis, was described based on isolates previously identified as P. maydis in Australia; this species is now a pathogen of major concern. Despite the strong impact of GDM diseases, there are presently no reliable molecular methods available for their detection. GDM pathogens are among the most difficult Oomycetes to identify using molecular tools, as their taxonomy is very challenging, and little genetic sequence data are available for development of molecular tools to detect GDM pathogens to species level. For example, from over 15 genes used in identification, diagnostics or phylogeny of Phytophthora, only ITS1 and cox2 show promise for use with GDM pathogens. Multiplex/multigene conventional and qPCR assays are currently under evaluation for the detection of economically important GDM spp. Scientists from the USA, Germany, Canada, Australia, and the Philippines are collaborating on the development and testing of diagnostic tools for these pathogens of concern.
Resumo:
We developed a suitable diet for mass rearing of Cryptolestes ferrugineus (Stephens) populations under laboratory conditions. Recently, this pest has developed strong level of resistance to phosphine in Australia, and therefore, a significant amount of research has been directed towards its management. In total, nineteen grain-based diets, containing rolled oats, various combinations of cracked grains and flours of wheat, sorghum, maize and barley were tested. Each diet contained a small proportion of wheat germ (4.5% w/w) and torula yeast (0.5% w/w). Experiments were conducted at fixed temperature and relative humidity regimes of 30 ± 2 °C and 70 ± 2%, respectively, and replicated three times. Adults (n = 40) of a laboratory strain of C. ferrugineus were introduced into each diet, removed after 14 days and total numbers of live adult progeny were recorded. The following diets resulted in highest live progeny production: barley flour (95%) (607.67 ± 11.21) = rolled oats (75%) + cracked sorghum (20%) (597.33 ± 33.79) ≥ wheat flour (47.5%) + barley flour (47.5%) (496.67 ± 52.93) > cracked sorghum (95%) (384.00 ± 60.66). The performance of these four diets was then tested with field-collected populations of C. ferrugineus and Cryptolestes pusillus (Schonherr). The diets based on rolled oats + cracked sorghum, wheat flour + barley flour, and barley flour alone consistently produced highest progeny numbers in field-collected populations of both species, with mean progeny numbers ranging from 359.9 to 478.5. The multiplication of C. pusillus was significantly higher than C. ferrugineus on all four diets. Our findings will help in mass rearing of healthy cultures of C. ferrugineus and C. pusillus that will greatly facilitate laboratory and field research and in particular, in developing management tactics for these species.
Resumo:
Pathogens and pests of stored grains move through complex dynamic networks linking fields, farms, and bulk storage facilities. Human transport and other forms of dispersal link the components of this network. A network model for pathogen and pest movement through stored grain systems is a first step toward new sampling and mitigation strategies that utilize information about the network structure. An understanding of network structure can be applied to identifying the key network components for pathogen or pest movement through the system. For example, it may be useful to identify a network node, such as a local grain storage facility, through which grain from a large number of fields will be accumulated and move through the network. This node may be particularly important for sampling and mitigation. In some cases more detailed information about network structure can identify key nodes that link two large sections of the network, such that management at the key nodes will greatly reduce the risk of spread between the two sections. In addition to the spread of particular species of pathogens and pests, we also evaluate the spread of problematic subpopulations, such as subpopulations with pesticide resistance. We present an analysis of stored grain pathogen and pest networks for Australia and the United States.
Resumo:
Harvest weed seed control (HWSC) is a new approach which targets weed seed removal and/or destruction during the crop harvest operation. The success of HWSC is dependant upon weed seed retention at harvest. To identify and define the potential value of HWSC in northern farming systems, we conducted a field survey. In total 1400 transects across 70 paddocks assessed weed distribution, density and seed production at harvest time in wheat, chickpea and sorghum crops. Seventy weed species were identified, of which many had large seed numbers retained at crop harvest. The most prevalent included common sowthistle, flaxleaf fleabane, awnless barnyard grass, wild oat, and African turnip weed. Our field survey has shown there is a role for HWSC in the northern farming system. Therefore the efficacy of specific HWSC systems on problematic weeds should be evaluated in the northern region.
Resumo:
Climatic variability in dryland production environments (E) generates variable yield and crop production risks. Optimal combinations of genotype (G) and management (M) depend strongly on E and thus vary among sites and seasons. Traditional crop improvement seeks broadly adapted genotypes to give best average performance under a standard management regime across the entire production region, with some subsequent manipulation of management regionally in response to average local environmental conditions. This process does not search the full spectrum of potential G × M × E combinations forming the adaptation landscape. Here we examine the potential value (relative to the conventional, broad adaptation approach) of exploiting specific adaptation arising from G × M × E. We present an in-silico analysis for sorghum production in Australia using the APSIM sorghum model. Crop design (G × M) is optimised for subsets of locations within the production region (specific adaptation) and is compared with the optimum G across all environments with locally modified M (broad adaptation). We find that geographic subregions that have frequencies of major environment types substantially different from that for the entire production region show greatest advantage for specific adaptation. Although the specific adaptation approach confers yield and production risk advantages at industry scale, even greater benefits should be achievable with better predictors of environment-type likelihood than that conferred by location alone.
Resumo:
Immediate and residual effects of two lengths of low plane of nutrition (PON) on the synthesis of milk protein and protein fractions were studied at the Mutdapilly Research Station, in south-east Queensland. Thirty-six multiparous Holstein-Friesian cows, between 46 and 102 days in milk (DIM) initially, were used in a completely randomised design experiment with three treatments. All cows were fed on a basal diet of ryegrass pasture (7.0 kg DM/cow.day), barley-sorghum concentrate mix (2.7 kg DM/cow.day) and a canola meal-mineral mix (1.3 kg DM/cow.day). To increase PON, 5.0 kg DM/cow.day supplemental maize and forage sorghum silage was added to the basal diet. The three treatments were (C) high PON (basal diet + supplemental silage); (L9) low PON (basal diet only) for a period of 9 weeks; and (L3) low PON (basal diet only) for a period of 3 weeks. The experiment comprised three periods (1) covariate – high PON, all groups (5 weeks), (2) period of low PON for either 3 weeks (L3) or 9 weeks (L9), and (3) period of high PON (all groups) to assess ability of cows to recover any production lost as a result of treatments (5 weeks). The low PON treatment periods for L3 and L9 were end-aligned so that all treatment groups began Period 3 together. Although there was a significant effect of L9 on yields of milk, protein, fat and lactose, and concentrations of true protein, whey protein and urea, these were not significantly different from L3. There were no residual effects of L3 or L9 on protein concentration or nitrogen distribution after 5 weeks of realimentation. There was no significant effect of low PON for 3 or 9 weeks on casein concentration or composition.
Resumo:
Alternative sources of N are required to bolster subtropical cereal production without increasing N2O emissions from these agro-ecosystems. The reintroduction of legumes in cereal cropping systems is a possible strategy to reduce synthetic N inputs but elevated N2O losses have sometimes been observed after the incorporation of legume residues. However, the magnitude of these losses is highly dependent on local conditions and very little data are available for subtropical regions. The aim of this study was to assess whether, under subtropical conditions, the N mineralised from legume residues can substantially decrease the synthetic N input required by the subsequent cereal crop and reduce overall N2O emissions during the cereal cropping phase. Using a fully automated measuring system, N2O emissions were monitored in a cereal crop (sorghum) following a legume pasture and compared to the same crop in rotation with a grass pasture. Each crop rotation included a nil and a fertilised treatment to assess the N availability of the residues. The incorporation of legumes provided enough readily available N to effectively support crop development but the low labile C left by these residues is likely to have limited denitrification and therefore N2O emissions. As a result, N2O emissions intensities (kgN2O-N yield-1ha-1) were considerably lower in the legume histories than in the grass. Overall, these findings indicate that the C supplied by the crop residue can be more important than the soil NO3 - content in stimulating denitrification and that introducing a legume pasture in a subtropical cereal cropping system is a sustainable practice from both environmental and agronomic perspectives.
Resumo:
Cultural practices alter patterns of crop growth and can modify dynamics of weed-crop competition, and hence need to be investigated to evolve sustainable weed management in dry-seeded rice (DSR). Studies on weed dynamics in DSR sown at different times under two tillage systems were conducted at the Agronomic Research Farm, University of Agriculture, Faisalabad, Pakistan. A commonly grown fine rice cultivar 'Super Basmati' was sown on 15th June and 7th July of 2010 and 2011 under zero-till (ZT) and conventional tillage (CONT) and it was subjected to different durations of weed competition [10, 20, 30, 40, and 50 days after sowing (DAS) and season-long competition]. Weed-free plots were maintained under each tillage system and sowing time for comparison. Grassy weeds were higher under ZT while CONT had higher relative proportion of broad-leaved weeds in terms of density and biomass. Density of sedges was higher by 175% in the crop sown on the 7th July than on the 15th June. Delaying sowing time of DSR from mid June to the first week of July reduced weed density by 69 and 43% but their biomass remained unaffected. Tillage systems had no effect on total weed biomass. Plots subjected to season-long weed competition had mostly grasses while broad-leaved weeds were not observed at harvest. In the second year of study, dominance of grassy weeds was increased under both tillage systems and sowing times. Significantly less biomass (48%) of grassy weeds was observed under CONT than ZT in 2010; however, during 2011, this effect was non-significant. Trianthema portulacastrum and Dactyloctenium aegyptium were the dominant broad-leaved and grassy weeds, respectively. Cyperus rotundus was the dominant sedge weed, especially in the crop sown on the 7th July. Relative yield loss (RYL) ranged from 3 to 13% and 7 to16% when weeds were allowed to compete only for 20 DAS. Under season-long weed competition, RYL ranged from 68 to 77% in 2010 and 74 to80% in 2011. The sowing time of 15th June was effective in minimizing weed proliferation and rectifying yield penalty associated with the 7th July sowing. The results suggest that DSR in Pakistan should preferably be sown on 15th June under CONT systems and weeds must be controlled before 20 DAS to avoid yield losses. Successful adoption of DSR at growers' fields in Pakistan will depend on whether growers can control weeds and prevent shifts in weed population from intractable weeds to more difficult-to-control weeds as a consequence of DSR adoption.
Resumo:
Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with classical Heddleston serotyping using LPS compositional data as the "gold standard." The LPS-mPCR correctly typed 57 of 58 isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classification of P. multocida strains.
Formulation and characterization of drug-loaded microparticles using distiller’s dried grain kafirin
Resumo:
Kafirin, a protein extracted from sorghum grain has been formulated into microparticles, and proposed for use as a delivery system due to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum “distiller’s dried grains with solubles” (DDGS) may be more efficient as the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation using sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.