999 resultados para Solvothermal treatment
Resumo:
Solvent fractionation and differential scanning calorimetry (DSC) results show that high impact polypropylene (hiPP) produced by a multistage polymerization process consists of PP homopolymer, amorphous ethylene-propylene random copolymer (EPR), and semicrystalline ethylene-propylene copolymer. For the original hiPP particles obtained right after polymerization, direct transmission electron microscopy (TEM) observation reveals a fairly homogeneous morphology of the ethylene-propylene copolymer (EP) phase regions inside, while the polyethylene-rich interfacial layer observed between the EP region and the iPP matrix supports that EP copolymers form on the subglobule surface of the original iPP particles. Compared with that in original hiPP particles, the dispersed EP domains in pellets have much smaller average size and relatively uniform size distribution, indicating homogenization of the EP domains in the hiPP by melt-compounding. Upon heat-treatment, phase reorganization occurs in hiPP, and the dispersed EP domains can form a multiple-layered core-shell structure, comprising a polyethylene-rich core, an EPR intermediate layer and an outer shell formed by EP block copolymer, which accounts to some extent for the good toughness-rigidity balance of the material.
Resumo:
The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.
Resumo:
The rigid backbone of the poly(3-butylthiophene) molecule adopts a perpendicular orientation with respect to the substrate by using a solvent-vapor treatment (see figure). Small and closely contacting spherulites instead of conventional whisker-like crystals are achieved. This could be utilized to improve charge-carrier mobility particularly in the direction normal to the film plane by designing and constructing thick crystalline domains in the functional layer.
Dewetting of polymethyl methacrylate on the patterned elastomer substrate by solvent vapor treatment
Resumo:
The dewetting evolution process of polymethyl methacrylate (PMMA) film on the flat and prepatterned polydimethylsiloxane (PDMS) substrates (with square microwells) by the saturated solvent of methyl ethyl ketone (MEK) treatment has been investigated at room temperature by the optical microscope (OM) and atomic force microscope (AFM). The final dewetting on the flat PDMS substrate led to polygonal liquid droplets, similar to that by temperature annealing. However, on the patterned PDMS substrate, depending on the microwells' structure of PDMS substrate and defect positions that initiated the rupture and dewetting of PMMA, two different kinds of dewetting phenomena, one initiated around the edge of the microwells and another initiated outside the microwells, were observed. The forming mechanism of these two different dewetting phenomena has been discussed. The microwells were filled with liquid droplets of PMMA after dewetting due to the formation of fingers caused by the pinning of the three-phase-line at the edge of the microwells and their rupture.
Resumo:
The self-assembly processes of the rod-coil diblock oligomer thin film of tetra-aniline (TANI)-block-poly(L-lactide) (PLLA) with different film thicknesses induced in the coil-selective solvent of acetone vapor at room temperature were studied. The morphologies of the oligomer films were determined by the film thickness. For the thicker film (232 nm), the nonextinct concentric ring-banded textures could form. While for the thinner and appropriate film (about 6 nm), multistacked diamond-shaped appearances with the periodic thickness being about 8.5 nm(6-nm-thick extended PLLA chain and 2.5-nm-thick p-pi conjugating TANI bimolecular layer) formed. The possible formation models of those two regular morphologies were presented in detail.
Resumo:
We have followed the time development of the microdomain structure in symmetric diblock copolymer poly(styrene-b-methyl methacrylate), P(S-b-MMA), ultrathin films via PMMA-selective solvent vapor treatment by atomic force microscopy (AFM). After preparation on a substrate preferentially attracting the PMMA block, PS forms a continuous layer at a film's free surface. With subsequent solvent vapor treatment, the film gradually shows a well-ordered hexagonally packed nanocylinders structure. It is shown that only when the film thickness is less than the 1/2L(0) (lamellar repeat spacing), and exposed to PMMA block selective solvent for an appropriate time, can the well-ordered hexagonally packed nanocylinders form. On an extended solvent vapor treatment, a mixed morphology containing nanocylinders and stripes appears, followed by the striped morphologies. When the annealing time is long enough, the film comes back to the flat surface again, however, with PMMA instead of PS dominating the free surface.
Resumo:
A simple thermal process for the preparation of small Pt nanoparticles is presented, carried out by heating a H-2-PtCl6/3- thiophenemalonic acid aqueous solution. The following treatment of such colloidal Pt solution with Ru( bpy)(3)(2+) causes the assembly of Pt nanoparticles into aggregates. Most importantly, directly placing such aggregates on bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors.
Resumo:
The size- and shape-controlled CdSe and CdTe nanocrystals, which exhibit obvious quantum confinement effect, have been synthesized by a solvothermal route. It is found that initial precursor concentrations are key factors in controlling the shape of the resulting nanocrystals. Moreover, the obtained nanocrystals are all of zinc blende structure, regardless of their sizes and shapes. A possible mechanism for the formation and growth of the nanocrystals is put forward. It is inferred that the adhesion and subsequent recrystallization of nanocrystals with an assistance of remaining monomers should be a major reason for formation and growth of the elongated nanocrystals.
Resumo:
A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle Xray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).
Resumo:
A new orthorhombic phase of BaEu2Mn2O7 with the space group of Ccmm (no.63) was identified for single crystals after heat treatment and its Crystal Structure was determined by single crystal X-ray diffractometry. The volume Of the unit cell has twice the fundamental tetragonal cell and corner-shared MnO6 octahedra are slightly distorted and Mn-O-Mn angle between the neighboring octahedra tilts with an angle by around 3 degrees from b-axis. It is concluded from the results of the heat treatment of single crystals at various temperatures that this orthorhombic phase changes into a tetragonal One With superstructure (P4(2)/mnm) at 402 K and changes once more into the fundamental tetragonal phase (I4/mmm) above 552 K. The tetragonal phase with superstructure which has been expected to be an unstable one is stable between the two temperatures.