928 resultados para Solar thermal Solar combisystems Building integration Polymer materials


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two classes of building blocks have been prepared and characterized and their coordination chemistry explored working towards the preparation of new molecule-based magnetic materials. In the first project, the amine functionality of 3,3'-diamino-2,2'- bipyridine was exploited for the preparation of a new family of ligands (H2L 1)-(H2L 4). The molecular structures of three ligands have been fully characterized by X-ray crystallography. [molecular structure diagram will not copy here, but is available in full pdf.] The coordination chemistry of these ligands with divalent first row transition metal ions was investigated. For ligand (H2L1), the molecular structures of four coordination complexes with stoichiometries [Zn2(Ll)(OAc)(MeO)]2 (I), [Cu2(L1)(OAc)2 (II), [Li(L1)]3 (III), and [Ni(L1)]3 (IV) were determined by X-ray crystallography. For ligand (H2L2), a Cu(II) complex of stoichiometry [Cu3(L2)(OAc)3MeO] (V) was determined by X-ray crystallography. The magnetic properties of complexes (II), (III), and (V) have been fully elucidated. In project two, synthetic strategies for the preparation of porphyrin molecules bearing triol substituents is presented. Following this approach, three new porphyrin derivatives have been prepared and characterized [Zn(HPTPP-CH2C(CH20H)3)] (VI), [P(TPP)(OCH2C(CH2)H)3)2]+CL- (VII), and [P(OEP)(C6H5)(OCH2C(CH2OH)3)]+Cl- (VIII). Attempts to exchange the labile methoxide bridges of a tetraironIIl single molecule magnet of stoichiometry [Fe4(OMe)6(dpm)6] (Hdpm = dipivaloylmethane) with the triol appended porphyrins will be discussed. [molecular structure diagram will not copy here, but is available in full pdf.]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Receipt for building materials bought by Samuel Woodruff for E. Riddle, signed by Mr. Kiddee, Aug. 5, 1876.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Ingeniería Cerámica) U.A.N.L.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias en Producción Agrícola) UANL, 2010.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Orientación en Química Analítica Ambiental) UANL, 2010.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Orientación en Procesos Sustentables) UANL, 2012.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Orientación en Química Analítica Ambiental) UANL, 2011.