942 resultados para Soil water
Quantifying the impacts of Conservation Agriculture (CA) on water use, soil quality and productivity
Resumo:
‘where the land is greener’ looks at soil and water conservation from a global perspective. In total, 42 soil and water conservation technologies and 28 approaches are described – each fully illustrated with photographs, graphs and line drawings – as applied in case studies in more than 20 countries around the world. This unique presentation of case studies draws on WOCAT’s extensive database, gathered in over 12 years of field experience. The book is intended as a prototype for national and regional compilations of sustainable land management practices a practical – instrument for making field knowledge available to decision makers. Various land use categories are covered, from crop farming to grazing and forestry. The technologies presented range from terrace-building to agroforestry systems; from rehabilitation of common pastures to conservation agriculture; from Vermiculture to water harvesting. Several of these technologies are already well-established successes – others are innovative, relatively unknown, but full of promise. Descriptions of the various technologies are complemented by studies of the ‘approaches’ that have underpinned their development and dissemination. Some of these approaches were developed specifically for individual projects; others developed and spread spontaneously in fascinating processes that offer a new perspective for development policy. In addition to the case studies, the book includes two analytical sections on the technologies and approaches under study. By identifying common elements of success, these analyses offer hope for productive conservation efforts at the local level with simultaneous global environmental benefits. Policy pointers for decision makers and donors offer a new impetus for further investment – to make the land greener.
Resumo:
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.
Resumo:
Excessive runoff and soil erosion in the upper Blue Nile Basin poses a threat that has attracted the attention of the Ethiopian government because of the serious on-site effects in addition to downstream effects, such as the siltation of water harvesting structures and reservoirs. The objective of the study was to evaluate and recommend effective biophysical soil and water conservation measure(s) in the Debre Mewi watershed, about 30 km south of the Lake Tana. Six conservation measures were evaluated for their effects on runoff, soil loss, and forage yield using runoff plots. There was a significant difference between treatments for both runoff and soil loss. The four-year average annual soil loss in the different plots ranged from 26 to 71 t ha−1, and total runoff ranged from 180 to 302 mm, while annual rainfall varied between 854 mm in 2008 and 1247 mm in 2011. Soil bund combined with elephant grass had the lowest runoff and soil loss as compared to the other treatments, whereas the untreated control plot had the highest for both parameters. As an additional benefit, 2.8 and 0.7 t ha−1 year−1 of dried forage was obtained from elephant and local grasses, respectively. Furthermore, it was found that soil bund combined with Tephrosia increased soil organic matter by 13% compared to the control plot. Soil bund efficiency was significantly enhanced by combining them with biological measures and improved farmers’ perception of soil and water conservation measures.
Resumo:
Listeria (L.) monocytogenes causes orally acquired infections and is of major importance in ruminants. Little is known about L. monocytogenes transmission between farm environment and ruminants. In order to determine potential sources of infection, we investigated the distribution of L. monocytogenes genetic subtypes in a sheep farm during a listeriosis outbreak by applying four subtyping methods (MALDI-TOF-MS, MLST, MLVA and PFGE). L. monocytogenes was isolated from a lamb with septicemia and from the brainstem of three sheep with encephalitis. Samples from the farm environment were screened for the presence of L. monocytogenes during the listeriosis outbreak, four weeks and eight months after. L. monocytogenes was found only in soil and water tank swabs during the outbreak. Four weeks later, following thorough cleaning of the barn, as well as eight months later, L. monocytogenes was absent in environmental samples. All environmental and clinical L. monocytogenes isolates were found to be the same strain. Our results show that the outbreak involving two different clinical syndromes was caused by a single L. monocytogenes strain and that soil and water tanks were potential infection sources during this outbreak. However, silage cannot be completely ruled out as the bales fed prior to the outbreak were not available for analysis. Faeces samples were negative, suggesting that sheep did not act as amplification hosts contributing to environmental contamination. In conclusion, farm management appears to be a crucial factor for the limitation of a listeriosis outbreak.
Resumo:
For successful implementation of any soil and water conservation (SWC) or sustainable land management practice, it is essential to have a proper understanding of the natural and human environment in which these practices are applied. This understanding should be based on comprehensive information concerning the application of the technologies and not solely on the technological details. The World Overview of Conservation Approaches and Technologies (WOCAT) is documenting and evaluating SWC practices worldwide, following a standardised methodology that facilitates exchange and comparison of experiences. Notwithstanding this standardisation, WOCAT allows flexible use of its outputs, adapted to different users and different environments. WOCAT offers a valuable tool for evaluating the strengths and weaknesses of SWC practices and their potential for application in other areas. Besides collecting a wealth of information, gaps in available information are also exposed, showing the need for more research in those fields. Several key issues for development- oriented research have been identified and are being addressed in collaboration with a research programme for mitigating syndromes of global change.
Resumo:
An efficient and reliable automated model that can map physical Soil and Water Conservation (SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ArcGIS, ERDAS IMAGINE, and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures: (1) a high-pass spatial filter algorithm was applied to detect linear features, (2) morphological processing was used to remove unwanted linear features, (3) the raster format was vectorized, (4) the vectorized linear features were split per hectare (ha) and each line was then classified according to its compass direction, and (5) the sum of all vector lengths per class of direction per ha was calculated. Finally, the direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Therefore, the model is useful for predicting and mapping physical SWC structures areas across diverse areas.
Resumo:
Proceedings of the 9th International Conference of the International Soil conservation Organisation (ISCO-9), from 26-30 August 1996 in Bonn, Germany