953 resultados para Single molecule resolution microscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilms are the primary cause of clinical bacterial infections and are impervious to typical amounts of antibiotics, necessitating very high doses for treatment. Therefore, it is highly desirable to develop new alternate methods of treatment that can complement or replace existing approaches using significantly lower doses of antibiotics. Current standards for studying biofilms are based on end-point studies that are invasive and destroy the biofilm during characterization. This dissertation presents the development of a novel real-time sensing and treatment technology to aid in the non-invasive characterization, monitoring and treatment of bacterial biofilms. The technology is demonstrated through the use of a high-throughput bifurcation based microfluidic reactor that enables simulation of flow conditions similar to indwelling medical devices. The integrated microsystem developed in this work incorporates the advantages of previous in vitro platforms while attempting to overcome some of their limitations. Biofilm formation is extremely sensitive to various growth parameters that cause large variability in biofilms between repeated experiments. In this work we investigate the use of microfluidic bifurcations for the reduction in biofilm growth variance. The microfluidic flow cell designed here spatially sections a single biofilm into multiple channels using microfluidic flow bifurcation. Biofilms grown in the bifurcated device were evaluated and verified for reduced biofilm growth variance using standard techniques like confocal microscopy. This uniformity in biofilm growth allows for reliable comparison and evaluation of new treatments with integrated controls on a single device. Biofilm partitioning was demonstrated using the bifurcation device by exposing three of the four channels to various treatments. We studied a novel bacterial biofilm treatment independent of traditional antibiotics using only small molecule inhibitors of bacterial quorum sensing (analogs) in combination with low electric fields. Studies using the bifurcation-based microfluidic flow cell integrated with real-time transduction methods and macro-scale end-point testing of the combination treatment showed a significant decrease in biomass compared to the untreated controls and well-known treatments such as antibiotics. To understand the possible mechanism of action of electric field-based treatments, fundamental treatment efficacy studies focusing on the effect of the energy of the applied electrical signal were performed. It was shown that the total energy and not the type of the applied electrical signal affects the effectiveness of the treatment. The linear dependence of the treatment efficacy on the applied electrical energy was also demonstrated. The integrated bifurcation-based microfluidic platform is the first microsystem that enables biofilm growth with reduced variance, as well as continuous real-time threshold-activated feedback monitoring and treatment using low electric fields. The sensors detect biofilm growth by monitoring the change in impedance across the interdigitated electrodes. Using the measured impedance change and user inputs provided through a convenient and simple graphical interface, a custom-built MATLAB control module intelligently switches the system into and out of treatment mode. Using this self-governing microsystem, in situ biofilm treatment based on the principles of the bioelectric effect was demonstrated by exposing two of the channels of the integrated bifurcation device to low doses of antibiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this study is to apply synchrotron radiation techniques for the study of hydrated cement pastes. In particular, the tetracalcium aluminoferrite phase, C4AF in cement nomenclature, is the major iron-containing phase in Ordinary Portland Cement (OPC) and in iron rich belite calcium sulfoaluminate cements. In a first study, the hydration mechanism of pure tetracalcium aluminoferrite phase with water-to-solid ratio of 1.0 has been investigated by HR-SXRPD (high resolution synchrotron X-ray powder diffraction). C4AF in the presence of water hydrates to form mainly an iron-containing hydrogarnet-type (katoite) phase, C3A0.84F0.16H6, as single crystalline phase. Its crystal structure and stoichiometry were determined by the Rietveld method and the final disagreement factors were RWP=8.1% and RF=4.8% [1]. As the iron content in the product is lower than that in C4AF, it is assumed that part of the iron also goes to an amorphous iron rich gel, like the hydrated alumina-type gel, as hydration proceeds. Further results from the high-resolution study will be discussed. In a second study, the behavior of pure and iron-containing katoites (C3AH6 and C3A0.84F0.16H6) under pressure have been analyzed by SXRPD using a diamond anvil cell (DAC) and then their bulk moduli were determined. The role of the pressure transmitting medium (PTM) has also been studied. In this case, silicone oil as well as methanol/ethanol mixtures have been used as PTM. Some “new peaks” were detected in the pattern for C3A0.84F0.16H6 as pressure increases, when using ethanol/methanol as PTM. These new peaks were still present at ambient pressure after releasing the applied pressure. They may correspond to crystalline nordstrandite or doyleite from the crystallization of amorphous aluminium hydroxide. The results from the high-pressure study will also be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply wide-field interferometric microscopy techniques to acquire quantitative phase profiles of ventricular cardiomyocytes in vitro during their rapid contraction with high temporal and spatial resolution. The whole-cell phase profiles are analyzed to yield valuable quantitative parameters characterizing the cell dynamics, without the need to decouple thickness from refractive index differences. Our experimental results verify that these new parameters can be used with wide field interferometric microscopy to discriminate the modulation of cardiomyocyte contraction dynamics due to temperature variation. To demonstrate the necessity of the proposed numerical analysis for cardiomyocytes, we present confocal dual-fluorescence-channel microscopy results which show that the rapid motion of the cell organelles during contraction preclude assuming a homogenous refractive index over the entire cell contents, or using multiple-exposure or scanning microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper complexes containing inorganic ligands were loaded on a functionalized titania (F-TiO2) to obtain drug delivery systems. The as-received copper complexes and those released from titania were tested as toxic agents on different cancer cell lines. The sol–gel method was used for the synthesis and surface functionalization of the titania, as well as for loading the copper complexes, all in a single step. The resultant Cu/F-TiO2 materials were characterized by several techniques. An “in vitro” releasing test was developed using an aqueous medium. Different concentrations (15.6–1000 µg mL−1) of each copper complex, those loaded on titania (Cu/F-TiO2), functionalized titania, and cis-Pt as a reference material, were incubated on RG2, C6, U373, and B16 cancer cell lines for 24 h. The morphology of functionalized titania and the different Cu/F-TiO2 materials obtained consists of aggregated nanoparticles, which generate mesopores. The amorphous phase (in dominant proportion) and the anatase phase were the structures identified through the X-ray diffraction profiles. These results agree with high-resolution transmission electron microscopy. Theoretical studies indicate that the copper compounds were released by a Fickian diffusion mechanism. It was found that independently of the copper complex and also the cell line used, low concentrations of each copper compound were sufficient to kill almost 100 % of cancer cells. When the cancer cells were treated with increasing concentrations of the Cu/F-TiO2 materials the number of survival cells decreased. Both copper complexes alone as well as those loaded on TiO2 had higher toxic effect than cis-Pt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3)63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of methodologies for the controlled chemical assembly of nanoparticles into plasmonic molecules of predictable spatial geometry is vital in order to harness novel properties arising from the combination of the individual components constituting the resulting superstructures. This paper presents a route for fabrication of gold plasmonic structures of controlled stoichiometry obtained by the use of a di-rhenium thio-isocyanide complex as linker molecule for gold nanocrystals. Correlated scanning electron microscopy (SEM)—dark-field spectroscopy was used to characterize obtained discrete monomer, dimer and trimer plasmonic molecules. Polarization-dependent scattering spectra of dimer structures showed highly polarized scattering response, due to their highly asymmetric D∞h geometry. In contrast, some trimer structures displayed symmetric geometry (D3h), which showed small polarization dependent response. Theoretical calculations were used to further understand and attribute the origin of plasmonic bands arising during linker-induced formation of plasmonic molecules. Theoretical data matched well with experimentally calculated data. These results confirm that obtained gold superstructures possess properties which are a combination of the properties arising from single components and can, therefore, be classified as plasmonic molecules

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The East Asian Monsoon (EAM) is an active component of the global climate system and has a profound social and economic impact in East Asia and its surrounding countries. Its impact on regional hydrological processes may influence society through industrial water supplies, food productivity and energy use. In order to predict future rates of climate change, reliable and accurate reconstructions of regional temperature and rainfall are required from all over the world to test climate models and better predict future climate variability. Hokkaido is a region which has limited palaeo-climate data and is sensitive to climate change. Instrumental data show that the climate in Hokkaido is influenced by the East Asian Monsoon (EAM), however, instrumental data is limited to the past ~150 years. Therefore down-core climate reconstructions, prior to instrumental records, are required to provide a better understanding of the long-term behaviour of the climate drivers (e.g. the EAM, Westerlies, and teleconnections) in this region. The present study develops multi-proxy reconstructions to determine past climatic and hydrologic variability in Japan over the past 1000 years and aid in understanding the effects of the EAM and the Westerlies independently and interactively. A 250-cm long sediment core from Lake Toyoni, Hokkaido was retrieved to investigate terrestrial and aquatic input, lake temperature and hydrological changes over the past 1000-years within Lake Toyoni and its catchment using X-Ray Fluorescence (XRF) data, alkenone palaeothermometry, the molecular and hydrogen isotopic composition of higher plant waxes (δD(HPW)). Here, we conducted the first survey for alkenone biomarkers in eight lakes in the Hokkaido, Japan. We detected the occurrence of alkenones within the sediments of Lake Toyoni. We present the first lacustrine alkenone record from Japan, including genetic analysis of the alkenone producer. C37 alkenone concentrations in surface sediments are 18µg C37 g−1 of dry sediment and the dominant alkenone is C37:4. 18S rDNA analysis revealed the presence of a single alkenone producer in Lake Toyoni and thus a single calibration is used for reconstructing lake temperature based on alkenone unsaturation patterns. Temperature reconstructions over the past 1000 years suggest that lake water temperatures varies between 8 and 19°C which is in line with water temperature changes observed in the modern Lake Toyoni. The alkenone-based temperature reconstruction provides evidence for the variability of the EAM over the past 1000 years. The δD(HPW) suggest that the large fluctuations (∼40‰) represent changes in temperature and source precipitation in this region, which is ultimately controlled by the EAM system and therefore a proxy for the EAM system. In order to complement the biomarker reconstructions, the XRF data strengthen the lake temperature and hydrological reconstructions by providing information on past productivity, which is controlled by the East Asian Summer monsoon (EASM) and wind input into Lake Toyoni, which is controlled by the East Asian Winter Monsoon (EAWM) and the Westerlies. By combining the data generated from XRF, alkenone palaeothermometry and the δD(HPW) reconstructions, we provide valuable information on the EAM and the Westerlies, including; the timing of intensification and weakening, the teleconnections influencing them and the relationship between them. During the Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM was suppressed, whereas, during the Little Ice Age (LIA), the influence of the EAWM dominated with time periods of increased EASM and Westerlies intensification. The El Niño Southern Oscillation (ENSO) significantly influenced the EAM; a strong EASM occurred during El Niño conditions and a strong EAWM occurred during La Niña. The North Atlantic Oscillation, on the other hand, was a key driver of the Westerlies intensification; strengthening of the Westerlies during a positive NAO phase and weakening of the Westerlies during a negative NAO phase. A key finding from this study is that our data support an anti-phase relationship between the EASM and the EAWM (e.g. the intensification of the EASM and weakening of the EAWM and vice versa) and that the EAWM and the Westerlies vary independently from each other, rather than coincide as previously suggested in other studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanoacetylene HC3N is a molecule of great astronomical importance and it has been observed in many interstellar environments. Its deuterated form DC3N has been detected in number of sources from external galaxies to Galactic interstellar clouds, star-forming regions and planetary atmospheres. All these detections relied on previous laboratory investigations, which however still lack some essential information concerning its infrared spectrum. In this project, high-resolution ro-vibrational spectra of DC3N have been recorded in two energy regions: 150 – 450 cm-1 and 1800 – 2800 cm-1. In the first window the ν7← GS, 2ν7 ← ν7, ν5 ← ν7, ν5+ν7 ← 2ν7, ν6+ν7 → 2v7, 4ν7 ← 2ν7 bands have been assigned, while in the second region the three stretching fundamental bands ν1, ν2, ν3 have been observed and analysed. The 150 – 450 cm-1 region spectra have been recorded at the AILES beamline at the SOLEIL synchrotron (France), the 1800 – 2800 cm-1 spectra at the Department of Industrial Chemistry “Toso Montanari” in Bologna. In total, 2299 transitions have been assigned. Such experimental transition, together with data previously recorded for DC3N, were included in a least-squares fitting procedure from which several spectroscopic parameters have been determined with high precision and accuracy. They include rotational, vibrational and resonance constants. The spectroscopic data of DC3N have been included in a line catalog for this molecule in order to assist future astronomical observations and data interpretation. A paper which includes this research work has been published (M. Melosso, L. Bizzocchi, A. Adamczyk, E. Cane, P. Caselli, L. Colzid, L. Dorea, B. M. Giulianob, J.-C. Guillemine, M-A. Martin-Drumel, O. Piralif, A. Pietropolli Charmet , D. Prudenzano, V. M. Rivillad, F. Tamassia, Extensive ro-vibrational analysis of deuterated-cyanoacetylene (DC3N) from millimeter wavelengths to the infrared domain, Jour. of Quant. Spectr. and Rad. Tran. 254, 107221, 2020).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) accounts for approximately 85% of all urinary tract infections (UTIs), causing a global economic burden. E. coli is one of the pathogens mentioned in the ESKAPEE list drafted by OMS, meaning that the increasing antibiotic resistance acquired by UPEC is and will be a serious health problem in the future. Amongst the immunogenic antigens exposed on the surface of UPEC, FimH represent a potential target for vaccine development, since it is involved in the early stages of infection. As already demonstrated, immunizations with FimH elicit functional antibodies that prevent UPEC infections even though the number of doses required to elicit a strong immune response is not optimal. In this work, we aimed to stabilize FimH as a soluble recombinant antigen exploiting the donor strand complementation mechanism by generating different chimeric constructs constituted by FimH and FimG donor strand. To explore the potential of self-assembling nanoparticles to display FimH through genetic fusion, different constructs have been computationally designed and produced. In this work a structure-based design, using available crystal structures of FimH and three different NPs was performed to generate different constructs with optimized properties. Despite the different conditions tested, all the constructs designed (single antigen or chimeric NPs), resulted to be un-soluble proteins in E. coli. To overcome this issue a mammalian expression system has been tested. Soluble antigen expression was achieved for all constructs tested in the culture supernatants. Three novel chimeric NPs have been characterized by transmission electron microscopy (TEM) confirming the presence of correctly assembled NPs displaying UPEC antigen. In vivo study has shown a higher immunogenicity of the E. coli antigen when displayed on NPs surface compared to the single recombinant antigen. The antibodies elicited by chimeric NPs showed a higher functionality in the inhibition of bacterial adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general description of the work presented in this thesis can be divided into three areas of interest: micropore fabrication, nanopore modification, and their applications. The first part of the thesis is related to the novel, reliable, cost-effective, potable, mass-productive, robust, and ease of use micropore flowcell that works based on the RPS technique. Based on our first goal, which was finding an alternate materials and processes that would shorten production times while lowering costs and improving signal quality, the polyimide film was used as a substrate to create precise pores by femtosecond laser, and the resulting current blockades of different sizes of the nanoparticles were recorded. Based on the results, the device can detecting nano-sized particles by changing the current level. The experimental and theoretical investigation, scanning electron microscopy, and focus ion beam were performed to explain the micropore's performance. The second goal was design and fabrication of a leak-free, easy-to-assemble, and portable polymethyl methacrylate flowcell for nanopore experiments. Here, ion current rectification was studied in our nanodevice. We showed a self-assembly-based, controllable, and monitorable in situ Poly(l-lysine)- g-poly(ethylene glycol) coating method under voltage-driven electrolyte flow and electrostatic interaction between nanopore walls and PLL backbones. Using designed nanopore flowcell and in situ monolayer PLL-g-PEG functionalized 20±4 nm SiN nanopores, we observed non-sticky α-1 anti-trypsin protein translocation. additionally, we could show the enhancement of translocation events through this non-sticky nanopore, and also, estimate the volume of the translocated protein. In this study, by comparing the AAT protein translocation results from functionalized and non-functionalized nanopore we demonstrated the 105 times dwell time reduction (31-0.59ms), 25% amplitude enhancement (0.24-0.3 nA), and 15 times event’s number increase (1-15events/s) after functionalization in 1×PBS at physiological pH. Also, the AAT protein volume was measured, close to the calculated AAT protein hydrodynamic volume and previous reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, polymerization processes assisted by atmospheric pressure plasma jets (APPJs) have received increasing attention in numerous industrially relevant sectors since they allow to coat complex 3D substrates without requiring expensive vacuum systems. Therefore, advancing the comprehension of these processes has become a high priority topic of research. This PhD dissertation is focused on the study and the implementation of control strategies for a polymerization process assisted by an atmospheric pressure single electrode plasma jet. In the first section, a study of the validity of the Yasuda parameter (W/FM) as controlling parameter in the polymerization process assisted by the plasma jet and an aerosolized fluorinated silane precursor is proposed. The surface characterization of coatings deposited under different W/FM values reveals the presence of two very well-known deposition domains, thus suggesting the validity of W/FM as controlling parameter. In addition, the key role of the Yasuda parameter in the process is further demonstrated since coatings deposited under the same W/FM exhibit similar properties, regardless of how W/FM is obtained. In the second section, the development of a methodology for measuring the energy of reactions in the polymerization process assisted by the plasma jet and vaporized hexamethyldisiloxane is presented. The values of energy per precursor molecule are calculated through the identification and resolution of a proper equivalent electrical circuit. To validate the methodology, these energy values are correlated to the bond energies in the precursor molecule and to the properties of deposited thin films. It is shown that the precursor fragmentation in the discharge and the coating characteristics can be successfully explained according to the obtained values of energy per molecule. Through a detailed discussion of the limits and the potentialities of both the control strategies, this dissertation provides useful insights into the control of polymerization processes assisted by APPJs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.