997 resultados para Single machines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTODUCTION: Nephrotic syndrome is one of the most frequent glomerular diseases among children, and steroid therapy remains as the treatment choice. In spite of this, 10 to 15% of the patients are steroidresistant, and the best therapy for such cases has never been defined. Mycophenolate acid (MA) is one of the treatments used in such situations. OBJECTIVE: To describe the clinical behavior of children diagnosed with steroid-resistant nephrotic syndrome (SRNS) and to assess the therapeutic response to MA. METHODS: This was a retrospective and descriptive study. RESULTS: 26 clinical records of patients with SRNS; 70% male and 30% female. All patients underwent kidney biopsies, which showed a predominance of focal segmental glomerulosclerosis (FSGS). The immunosuppresive drugs used were: Mycophenolate mofetil (MMF) 100%, Cyclosporine 69.2%, Cyclophosphamide 23.1%, and Rituximab 23%. One month after treatment initiation with MMF 61.5% achieved remission. The median of relapses per year for the patients was 3 (p25: 2.75 - p75: 4). This median became 1 (p25: 1 - p75: 3.25) after using this medication (p = 0.08). Furthermore, prior to the start of the MMF treatment, the median of the steroid dose was 1 (p25: 0.5- p75: 1.62) mg/k/day. After using MMF, this median became 0.07 (p25: 0 - p75: 0.55) mg/k/day (p < 0.001), in 8 patients prednisolone was stopped. CONCLUSION: In our experience, treatment with MMF showed positive results such as decrease in the frequency of relapses, less proteinuria, and reduction in the dose of steroids administered without deterioration of glomerular filtration rates. However, more studies are needed to assess efficacy, safety, and optimal dosage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Tuberculosis is a common opportunistic infection in renal transplant patients. Objective: To obtain a clinical and laboratory description of transplant patients diagnosed with tuberculosis and their response to treatment during a period ranging from 2005 to 2013 at the Pablo Tobón Uribe Hospital. Methods: Retrospective and descriptive study. Results: In 641 renal transplants, tuberculosis was confirmed in 12 cases. Of these, 25% had a history of acute rejection, and 50% had creatinine levels greater than 1.5 mg/dl prior to infection. The disease typically presented as pulmonary (50%) and disseminated (33.3%). The first phase of treatment consisted of 3 months of HZRE (isoniazid, pyrazinamide, rifampicin and ethambutol) in 75% of the cases and HZME (isoniazid, pyrazinamide, moxifloxacin and ethambutol) in 25% of the cases. During the second phase of the treatment, 75% of the cases received isoniazid and rifampicin, and 25% of the cases received isoniazid and ethambutol. The length of treatment varied between 6 and 18 months. In 41.7% of patients, hepatotoxicity was associated with the beginning of anti-tuberculosis therapy. During a year-long follow-up, renal function remained stable, and the mortality rate was 16.7%. Conclusion: Tuberculosis in the renal transplant population studied caused diverse nonspecific symptoms. Pulmonary and disseminated tuberculosis were the most frequent forms and required prolonged treatment. Antituberculosis medications had a high toxicity and mortality. This infection must be considered when patients present with a febrile syndrome of unknown origin, especially during the first year after renal transplant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accelerating adoption of electrical technologies in vehicles over the recent years has led to an increase in the research on electrochemical energy storage systems, which are among the key elements in these technologies. The application of electrochemical energy storage systems for instance in hybrid electrical vehicles (HEVs) or hybrid mobile working machines allows tolerating high power peaks, leading to an opportunity to downsize the internal combustion engine and reduce fuel consumption, and therefore, CO2 and other emissions. Further, the application of electrochemical energy storage systems provides an option of kinetic and potential energy recuperation. Presently, the lithium-ion (Li-ion) battery is considered the most suitable electrochemical energy storage type in HEVs and hybrid mobile working machines. However, the intensive operating cycle produces high heat losses in the Li-ion battery, which increase its operating temperature. The Li-ion battery operation at high temperatures accelerates the ageing of the battery, and in the worst case, may lead to a thermal runaway and fire. Therefore, an appropriate Li-ion battery cooling system should be provided for the temperature control in applications such as HEVs and mobile working machines. In this doctoral dissertation, methods are presented to set up a thermal model of a single Li-ion cell and a more complex battery module, which can be used if full information about the battery chemistry is not available. In addition, a non-destructive method is developed for the cell thermal characterization, which allows to measure the thermal parameters at different states of charge and in different points of cell surface. The proposed models and the cell thermal characterization method have been verified by experimental measurements. The minimization of high thermal non-uniformity, which was detected in the pouch cell during its operation with a high C-rate current, was analysed by applying a simplified pouch cell 3D thermal model. In the analysis, heat pipes were incorporated into the pouch cell cooling system, and an optimization algorithm was generated for the estimation of the optimalplacement of heat pipes in the pouch cell cooling system. An analysis of the application of heat pipes to the pouch cell cooling system shows that heat pipes significantly decrease the temperature non-uniformity on the cell surface, and therefore, heat pipes were recommended for the enhancement of the pouch cell cooling system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial-flux machines tend to have cooling difficulties since it is difficult to arrange continuous heat path between the stator stack and the frame. One important reason for this is that no shrink fitting of the stator is possible in an axial-flux machine. Using of liquid-cooled end shields does not alone solve this issue. Cooling of the rotor and the end windings may also be difficult at least in case of two-stator-single-rotor construction where air circulation in the rotor and in the end-winding areas may be difficult to arrange. If the rotor has significant losses air circulation via the rotor and behind the stator yokes should be arranged which, again, weakens the stator cooling. In this paper we study a novel way of using copper bars as extra heat transfer paths between the stator teeth and liquid cooling pools in the end shields. After this the end windings still suffer of low thermal conductivity and means for improving this by high-heat-conductance material was also studied. The design principle of each cooling system is presented in details. Thermal models based on Computational Fluid Dynamics (CFD) are used to analyse the temperature distribution in the machine. Measurement results are provided from different versions of the machine. The results show that significant improvements in the cooling can be gained by these steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Master’s thesis is to find a method for classifying spare part criticality in the case company. Several approaches exist for criticality classification of spare parts. The practical problem in this thesis is the lack of a generic analysis method for classifying spare parts of proprietary equipment of the case company. In order to find a classification method, a literature review of various analysis methods is required. The requirements of the case company also have to be recognized. This is achieved by consulting professionals in the company. The literature review states that the analytic hierarchy process (AHP) combined with decision tree models is a common method for classifying spare parts in academic literature. Most of the literature discusses spare part criticality in stock holding perspective. This is relevant perspective also for a customer orientated original equipment manufacturer (OEM), as the case company. A decision tree model is developed for classifying spare parts. The decision tree classifies spare parts into five criticality classes according to five criteria. The criteria are: safety risk, availability risk, functional criticality, predictability of failure and probability of failure. The criticality classes describe the level of criticality from non-critical to highly critical. The method is verified for classifying spare parts of a full deposit stripping machine. The classification can be utilized as a generic model for recognizing critical spare parts of other similar equipment, according to which spare part recommendations can be created. Purchase price of an item and equipment criticality were found to have no effect on spare part criticality in this context. Decision tree is recognized as the most suitable method for classifying spare part criticality in the company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard squirrel-cage induction machine has nearly reached its maximum efficiency. In order to further increase the energy efficiency of electrical machines, the use of permanent magnets in combination with the robust design and the line start capability of the induction machine is extensively investigated. Many experimental designs have been suggested in literature, but recently, these line-start permanent-magnet machines (LSPMMs) have become off-the-shelf products available in a power range up to 7.5 kW. The permanent magnet flux density is a function of the operating temperature. Consequently, the temperature will affect almost every electrical quantity of the machine, including current, torque, and efficiency. In this paper, the efficiency of an off-the-shelf 4-kW three-phase LSPMM is evaluated as a function of the temperature by both finite-element modeling and by practical measurements. In order to obtain stator, rotor, and permanent magnet temperatures, lumped thermal modeling is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As reactive extraction grown more and more popular in a variety of technological applications, optimizing its performance becomes more and more important. The process of complex formation is affected by a great number of both physical and chemical properties of all the components involved, and sometimes their interference with one another makes improving the effectiveness of such processes very difficult. In this Master’s Theses, the processes of complex formation between the aqueous phase - represented by copper sulfate water solution, and organic phase – represented by Acorga M5640 solvent extractor, were studied in order to establish the effect these components have on reactive extraction performance and to determine which step is bottlenecking the process the most.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future of paying in the age of digitalization is a topic that includes varied visions. This master’s thesis explores images of the future of paying in the Single Euro Payment Area (SEPA) up to 2020 and 2025 through the views of experts specialized in paying. This study was commissioned by a credit management company in order to obtain more detailed information about the future of paying. Specifically, this thesis investigates what could be the most used payment methods in the future, what items could work as a medium of exchange in 2020 and how will they evolve towards the year 2025. Changing consumer behavior, trends connected to payment methods, security and private issues of new cashless payment methods were also part of this study. In the empirical part of the study the experts’ ideas about probable and preferable future images of paying were investigated through a two-round Disaggregative Delphi method. The questionnaire included numeric statements and open questions. Three alternative future images were created with the help of cluster analysis: “Unsurprising Future”, “Technology Driven Future” and “The Age of the Customer”. The plausible images had similarities and differences, which were reflected to the previous studies in the literature review. The study’s findings were formed based on the images of futures’ similarities and to the open questions answers that were received from the questionnaire. The main conclusion of the study was that development of technology will unify and diversify SEPA; the trend in 2020 seems to be towards more cashless payment methods but their usage depends on the countries’ financial possibilities and customer preferences. Mobile payments, cards and cash will be the main payment methods but the banks will have competitors from outside the financial sector. Wearable payment methods and NFC technology are seen as widely growing trends but subcutaneous payment devices will likely keep their niche position until 2025. In the meantime, security and private issues are seen to increase because of identity thefts and various frauds. Simultaneously, privacy will lose its meaning to younger consumers who are used to sharing their transaction and personal data with third parties in order to get access to attractive services. Easier access to consumers’ transaction data will probably open the door for hackers and cause new risks in paying processes. There exist many roads to future, and this study was not an attempt to give any complete answers about it even if some plausible assumptions about the future’s course were provided.