989 resultados para Shape Optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is aimed at optimising the static performance of a high voltage SOI LDMOSFET. Starting with a conventional LDMOSFET, 2D and 3D numerical simulation models, able to accurately match datasheet values, have been developed. Moving from the original device, several design techniques have been investigated with the target of improving the breakdown voltage and the ON-state resistance. The considered design techniques are based on the modification of the doping profile of the drift region and the Superjunction design technique. The paper shows that a single step doping within the drift region is the best design choice for the considered device and is found to give a 24% improvement in the breakdown voltage and a 17% reduction of the ON-state resistance. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transforms for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a real and challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries-arrays of one, three, four, and five-were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of particle shape on the stress-strain response of fine silica sand is investigated experimentally. Two sands from the same source and with the same particle size distribution were examined using Fourier descriptor analysis for particle shape. Their grains were, on average, found to have similar angularity but different elongation. During triaxial stress path testing, the stress-strain behavior of the sands for both loading and creep stages were found to be influenced by particle elongation. In particular, the behavior of the sand with less elongated grains was more like that of rounded glass beads during creep. The results highlight the role of particle shape in stress transmission in granular packings and suggest that shape should be taken more rigorously into consideration in characterizing geomaterials. © 2005 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization of the bandwidth of a 2 km 50 μm multimode fiber at 850 nm is investigated theoretically and experimentally by steering a single spot, or two in antiphase spots across the core of the fiber in two dimensions using a ferroelectric liquid-crystal-based spatial light modulator. This method not only allows an optimal offset launch position to be chosen in situ but can also characterize the geometry and position of the core, identify defects, and measure the maximum differential mode delay. Its ability to selectively excite specific mode groups is also of relevance to mode-group division multiplexing. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper tackles the novel challenging problem of 3D object phenotype recognition from a single 2D silhouette. To bridge the large pose (articulation or deformation) and camera viewpoint changes between the gallery images and query image, we propose a novel probabilistic inference algorithm based on 3D shape priors. Our approach combines both generative and discriminative learning. We use latent probabilistic generative models to capture 3D shape and pose variations from a set of 3D mesh models. Based on these 3D shape priors, we generate a large number of projections for different phenotype classes, poses, and camera viewpoints, and implement Random Forests to efficiently solve the shape and pose inference problems. By model selection in terms of the silhouette coherency between the query and the projections of 3D shapes synthesized using the galleries, we achieve the phenotype recognition result as well as a fast approximate 3D reconstruction of the query. To verify the efficacy of the proposed approach, we present new datasets which contain over 500 images of various human and shark phenotypes and motions. The experimental results clearly show the benefits of using the 3D priors in the proposed method over previous 2D-based methods. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several research studies have been recently initiated to investigate the use of construction site images for automated infrastructure inspection, progress monitoring, etc. In these studies, it is always necessary to extract material regions (concrete or steel) from the images. Existing methods made use of material's special color/texture ranges for material information retrieval, but they do not sufficiently discuss how to find these appropriate color/texture ranges. As a result, users have to define appropriate ones by themselves, which is difficult for those who do not have enough image processing background. This paper presents a novel method of identifying concrete material regions using machine learning techniques. Under the method, each construction site image is first divided into regions through image segmentation. Then, the visual features of each region are calculated and classified with a pre-trained classifier. The output value determines whether the region is composed of concrete or not. The method was implemented using C++ and tested over hundreds of construction site images. The results were compared with the manual classification ones to indicate the method's validity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.