917 resultados para Sert (serotonin Transporter)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chaque année en Suisse, 15000 personnes meurent du cancer, ce qui en fait la deuxième cause de mortalité [1]. Il est donc nécessaire d'introduire sur le marché de nouveaux traitements plus efficaces. Ces derniers doivent passer par une période d'essais cliniques qui comporte plusieurs phases, dont la phase I. Celle-ci sert principalement à déterminer la dose maximale tolérable d'un médicament, en exposant le patient à des doses croissantes. Déterminer les motivations des patients à participer à la phase I d'un essai clinique, alors que les bénéfices personnels sont relativement faibles [3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.