921 resultados para Separators (Machines)
Resumo:
The paper presents an improved version of the greedy open shop approximation algorithm with pre-ordering of jobs. It is shown that the algorithm compares favorably with the greedy algorithm with no pre-ordering by reducing either its absolute or relative error. In the case of three machines, the new algorithm creates a schedule with the makespan that is at most 3/2 times the optimal value.
Resumo:
We consider two “minimum”NP-hard job shop scheduling problems to minimize the makespan. In one of the problems every job has to be processed on at most two out of three available machines. In the other problem there are two machines, and a job may visit one of the machines twice. For each problem, we define a class of heuristic schedules in which certain subsets of operations are kept as blocks on the corresponding machines. We show that for each problem the value of the makespan of the best schedule in that class cannot be less than 3/2 times the optimal value, and present algorithms that guarantee a worst-case ratio of 3/2.
Resumo:
Temperature distributions involved in some metal-cutting or surface-milling processes may be obtained by solving a non-linear inverse problem. A two-level concept on parallelism is introduced to compute such temperature distribution. The primary level is based on a problem-partitioning concept driven by the nature and properties of the non-linear inverse problem. Such partitioning results to a coarse-grained parallel algorithm. A simplified 2-D metal-cutting process is used as an example to illustrate the concept. A secondary level exploitation of further parallel properties based on the concept of domain-data parallelism is explained and implemented using MPI. Some experiments were performed on a network of loosely coupled machines consist of SUN Sparc Classic workstations and a network of tightly coupled processors, namely the Origin 2000.
Resumo:
The paper considers the job shop scheduling problem to minimize the makespan. It is assumed that each job consists of at most two operations, one of which is to be processed on one of m⩾2 machines, while the other operation must be performed on a single bottleneck machine, the same for all jobs. For this strongly NP-hard problem we present two heuristics with improved worst-case performance. One of them guarantees a worst-case performance ratio of 3/2. The other algorithm creates a schedule with the makespan that exceeds the largest machine workload by at most the length of the largest operation.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
We study the special case of the m machine flow shop problem in which the processing time of each operation of job j is equal to pj; this variant of the flow shop problem is known as the proportionate flow shop problem. We show that for any number of machines and for any regular performance criterion we can restrict our search for an optimal schedule to permutation schedules. Moreover, we show that the problem of minimizing total weighted completion time is solvable in O(n2) time. © 1998 John Wiley & Sons, Ltd.