987 resultados para Sensing for robot manipulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field configured assembly is a programmable force field method that permits rapid, "hands-free" manipulation, assembly, and integration of mesoscale objects and devices. In this method, electric fields, configured by specific addressing of receptor and counter electrode sites pre-patterned at a silicon chip substrate, drive the field assisted transport, positioning, and localization of mesoscale devices at selected receptor locations. Using this approach, we demonstrate field configured deterministic and stochastic self-assembly of model mesoscale devices, i.e., 50 mum diameter, 670 nm emitting GaAs-based light emitting diodes, at targeted receptor sites on a silicon chip. The versatility of the field configured assembly method suggests that it is applicable to self-assembly of a wide variety of functionally integrated nanoscale and mesoscale systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Transient ischemic attack (TIA) is a condition causing focal neurological deficits lasting less than 24hrs. TIA patients present similarly to other conditions with rapid onset of neurological symptoms such as migraine. The accurate diagnosis of TIA is critical because it serves as a warning for subsequent stroke. Furthermore, cognitive deficit associated with TIA may predict the development of dementia. Therefore, characterizing the cognitive symptoms of TIA patients and discriminating these patients from those with similar symptoms is important for proper diagnosis and treatment. Currently the diagnosis of TIA is made on clinical and radiographic evidence. Robotic assessment, with instruments such as the KINARM, may improve the identification of cognitive impairment in TIA patients. Methods: In this prospective cohort study, two KINARM tests, trail making task (TMT) and spatial span task (SST), were used to detect cognitive deficits. Two study groups were made. The TIA group was tested at 5 time points over the span of a year. The migraine active control group had one initial visit and another a year later. Both of these groups were compared to a normative database of approximately 400 healthy volunteers. From this database age and sex matched normative data was used to calculate Z-scores for the TMT. The Montreal Cognitive Assessment (MoCA) was also administered to both groups. Results: 31 participants were recruited, 20 TIA group and 11 active controls (mean ± SD age= 66 ± 11.3 and 62 ± 14.5). There was no significant difference in TIA and active control group MoCA scores. The TMT was able to detect cognitive impairment in TIA and migraine group. Also, both KINARM tasks could detect significant differences in performance between TIA and migraine patients while the MoCA could not. Changes in TIA and migraine performance on the MoCA, TMT, and SST were observed. Conclusions: The robotic KINARM exoskeleton can be used to assess cognitive deficits in TIA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Without an absolute position sensor (e.g., GPS), an accurate heading estimate is necessary for proper localization of an autonomous unmanned vehicle or robot. This paper introduces direction maps (DMs), which represent the directions of only dominant surfaces of the vehicle’s environment and can be created with negligible effort. Given an environment with reoccurring surface directions (e.g., walls, buildings, parked cars), lines extracted from laser scans can be matched with a DM to provide an extremely lightweight heading estimate that is shown, through experimentation, to drastically reduce the growth of heading errors. The algorithm was tested using a Husky A200 mobile robot in a warehouse environment over traverses hundreds of metres in length. When a simple a priori DM was provided, the resulting heading estimation showed virtually no error growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid droplets suspended by the tip of a thin wire, a glass capillary, or a needle form high-Q optical resonators, thanks to surface tension. Under gravity equilibrium conditions, the maximum drop diameter is approximately 1.5 mm for paraffin oil (volume ∼ 0.5 μL) using, for instance, a silica fiber with 250 μm thickness. Whispering gallery modes are excited by a free-space near-infrared laser that is frequency locked to the cavity resonance. The droplet cavity serves as a miniature laboratory for sensing of chemical species and particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contour lithography method [1] is used to improve the fabrication yield of previously demonstrated [2] microfluidic Fabry-Perot (FP) refractive index (RI) sensors. The sensors are then coated with polydimethylsiloxane (PDMS) based polymers to detect vapor analytes by solid-phase microextraction (SPME). Preliminary characterization of devices coated with two different polymers and exposed to xylenes vapors yields a maximum sensitivity of 0.015 nm/ppm and a detection limit below 120 ppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An etched long-period grating was used as a refractive index sensor for vapours of four volatile organic compounds, i.e. m-xylene, cyclohexane, trichloroethylene and commercial gasoline. The sensitivity to the vapours was further increased by solid-phase microextraction into a coating made of polydimethylsiloxane (PDMS)/polymethyl-octylsiloxane (PMOS) co-polymer. By further amplification of the optical loss in an optical cavity made of two identical fiber-Bragg gratings and interrogation by phase-shift cavity ring-down spectroscopy we could detect and distinguish xylene (detection limit: 134ppm) from trichloroethylene (3300ppm), cyclohexane (1850ppm) and gasoline (10,500ppm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

Relevância:

20.00% 20.00%

Publicador: