961 resultados para Seismic microzonation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the development of the technology of earthquake observation, more and more researchers work at many fields' of seismicity using seismic kinetic property, as the result, the study of attenuation has also made great progress, especially in the mechanism of the attenuation and the physical process. Aki put forward single back scattering theory to explain the forming of the seismic coda wave in 1969. Then, researchers started to develop the study in seismic scattering and attenuation. My thesis is also based on that theory. We assume that the Lg wave is a superposition fo high-mode surface waves, the coda of Lg is caused by scattering. Sato proposed Single Isotropic Scattering model (SIS model) to interpreted the scatter property, and he also formulated the geometrical spreading term. Then Xie (1988) developed the single spectral-ratio (SSR) method to obtain the Lg coda Q and the frequency dependent factor n. Later, he get to lateral images in the area of scatter ellipse. SSR method is explored and used in the study of Lg coda waves of regional earthquakes in my thesis. Choosing the earthquakes records with high ratio of signal-noise ,which were recorded at the stations from 1989 to 1999, we obtain the single trace Lg coda Q and its frequency dependent factor n. The results proved that SIS model is the reasonable model to explain the Lg coda wave, and SSR method also can be used to process Lg coda of regional earthquakes to get to the satisfied Lg coda Q. Based on the Lg coda Q we obtained using the former method, we explore the programs to inverse the regional Lg coda Q independently, and then make use of them to inverse the Lg coda Q of Beijing and adjacent area. The inversion result is satisfied. We conclude that the distribution of Qo (Q in lHz) is marked by the inhomogeneity, which is related to the tectonic structure: The value of Qo in uplift area, for example, Yanshan uplift, Taihang uplift, Luxi Uplift, is higher than the depression area, for example, Jizhong depression, Huanghua depression, and Jiyang depression, and the border between the higher Q area and lower Q area is very clear; Lg coda Q is also related to the velocity structure, higher velocity area is also with higher Q, lower velocity area is with lower Q; and higher heat-flow area is companied with lower Q. All in all, the value of Q reflects the difference of characteristics of lithofaces, porosity, the liquid content between the pores and heat flow. So, the Q value difference between uplift area and depression area reveals the difference of tectonic structure, lithology and physical character of the rock. So, the study of Lg coda Q is help to understand the earthquakes propagation mechanism through the inhomogenous medium, the cause of the coda, attenuation mechanism of the coda. Making use of the lateral images of Q, with velocity images, heat flow results, and other experimental result, we will be promoted to understand the complex structure of the crust, its inhomogenous character, and so on.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis mainly studies the technologies of 3-D seismic visualization and Graphic User Interface of seismic processing software. By studying Computer Graphics and 3-D geological modeling, the author designs and implements the visualization module of seismic data processing software using OpenGL and Motif. Setting seismic visualization flow as the subject, NURBS surface approximation and Delaunay Triangulation as the two different methods, the thesis discusses the key algorithms and technologies of seismic visualization and attempts to apply Octree Space Partitioning and Mip Mapping to enhance system performance. According to the research mentioned above, in view of portability and scalability, the author adopts Object-oriented Analysis and Object-oriented Design, uses standard C++ as programming language, OpenGL as 3-D graphics library and Motif as GUI developing tool to implement the seismic visualization framework on SGI Irix platform. This thesis also studies the solution of fluid equations in porous media. 2-D alternating direction implicit procedure has been turned into 3-D successive over relaxation iteration, which possesses such virtues as faster computing speed, faster convergence rate, better adaptability to heterogeneous media and less memory demanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under the auspices of the 'knowledge-Innovation Program' of CAS, Institute of Geology and Geophysics has established the Broadband Seismic Laboratory. A new kind of 24-bit high-resolution seismograph DAS24-3B has been designed and manufactured in an effort of developing China's own technology of seismic array. Since these instruments will primarily be used in field operation, there is a need to optimize the system software of data acquisition system (DAS) to enhance its stability, compatibility and maintenance. The design ideas of the system software of DAS24-3B are partly learned from the advanced DAS 72A-08. In this system there are two exclusive communication programs DNAPI-COM1 and DNAPI-LPT1, which are suitable for all standard industrial computers with ECP parallel port and serial port. By these exclusive parallel and serial communication interface the system software is split into three parts, acquisition program, user's control program and graphical display program, which can function well in separate units and can run correctly in whole. The three parts of DAS24-3B's system software possess different functions and advantages. The function of acquisition program is to control the process of seismic data acquisition. DAS24-3B system reduced its power and harddisk read-write disturbance by using the extended memory attached to its CPU, which functions as enlarging the data buffer of system and lessening the times of harddisk read-write operations. Since GPS receiver of DAS is strongly sensitive to the around environment and has the possibility of signal loss the acquisition program has been designed with the ability to automatically trail the GPS locked time. The function of user's controlling program is to configure the system's work environment, to inform the user's commands to DAS, to trail the status of DAS in real-time. The function of graphical display program is to illustrate data in figures, to convert data file into some common formatted file, to split data file in parts and combine data files into one. Both user's control program and graphical display program are API (Application Programming Interface) in window 95/98 system. Both possess the features of clearness and friendship by use of all kind of window controls, which are composed by menu, toolbar, statusbar, dialogue box, message box, edit box, scrollbar, time control, button and so on. Two programs of systemic exception handles are provided to treat the trouble in field. The DAS24-3B DAS has been designed to be easier to use-better ability, more stable and simpler. It has been tested in field and base station and has been proved more suitable for field operation of seismic array than other native instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on multi-principle (such as structures, tectonics and kinematics) exploratory data and related results of continental dynamics in the Tibetan plateau, the author reconstructed the geological-geophysical model of lithospherical structure and tectonic deformation, and the kinetics boundary conditions for the model. Then, the author used the numerical scheme of Fast Lagrangian Analysis of Continua (FLAC), to stimulate the possible process of the stress field and deformational field in the Tibetan plateau and its adjacent area, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. With the above-mentioned results, the author discussed the relationship between crustal movement in shallow layer and the deformational process in interior layers, and its possible dynamic constraints in deep. At the end of the paper, an integrative model has been put forward to explain the outline images of crust-mantle deformation and coupling in the Tibetan Plateau. (1) The characteristics of crust-mantle structure of the Tibetan plateau have been shown to be very complex, and vertical and horizontal difference is significant. The general characteristics of crust-mantle of the Tibetan plateau may be that it's layering in depth direction, and shows blocking from south to north and belting from east to west, mainly according to the results of about 20 seismic sections, such as wide-angle seismic profiles, CMP, seismic tomography and so on. (2) The crust had shortened about 2200km, while the shortening is different for different block from south to north in the Tibetan plateau. It is about 11.5mm/a in Himalayan block, about 9.0mm/a in Lhas-Gangdese block, about 7.0mm/a in Qiangtang block and Songpan-Ganzi-Kekexili block, about 8.0mm/a in Kunlun-Qaidam, and about ll.Omm/a in Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. Which - in demonstrates the shortening rate decreases from south to north, but this rate increases near the north edge of the Tibetan plateau. The crust thickening rate is about 0.4mm/a in the whole Tibetan plateau; and this rate is about 0.5mm/a in Himalayan block, about 0.4mm/a in Lhas-Gangdese block, about 0.3mm/a in Qiangtang block, about 0.2mm/a in Songpan-Ganzi-Kekexili block and about O.lmm/a in Kunlun-Qaidam-Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. This implies that the thickening rate decreases in the blocks of the Tibetan plateau. From south to north, the displacement of eastern boundary in the Tibetan plateau is about 37mm/a in Himalayan block, about 45mm/a in Lhas-Gangdese block, about 47mm/a in Qiangtang block, about 43mm/a in Songpan-Ganzi-Kekexili block, and about 35mm/a in Kunlun-Qaidam-Qilian block, since the collision-matching between the Indian continent and Eurasia continent had happened about 50Ma ago. This implies that the rate of eastward displacement is biggest in the middle of plateau, and decreases to both sides. The transition of S-N compression stress field in Tibetan Plateau, since about 28Ma+ ago, may be caused by two reasons: On one hand, the movement direction of Eurasia continent changed from northward to southward about 28Ma± ago in the northern plateau. On the other hand, the front belt that is located between India continent's and Eurasia continent's convergence-collision, had moved southward to high Himalayan from Indus-Brahmaputra suture almost at the same time in southern plateau. Affected by the stress field, the earlier tectonics rotated clockwise, NE and NW conjugate strike-slip faults developed, and the SN rift formed. This indicated that the EW movement started. The ratio between upper crust and lower crust of different blocks from south to north in the Tibetan plateau during the process of deformation are as following: about 3.5~5:1 in Himalayan block, about 1~5: 3-4 (which is about 1:3o--4 in south and about 4~5:3 in north) in Lhas-Gangdese block, about 1:3~447mm/a in these blocks: Which is located to the north of Banggong-nujiang suture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a marginal subject, dynamic responses of slopes is not only an important problem of engineering geology (Geotechnical problem), but also of other subjects such as seismology, geophysics, seismic engineering and engineering seismic and so on. Owning to the gulf between different subjects, it is arduous to study dynamic responses of slopes and the study is far from ripeness. Studying on the dynamic responses of slopes is very important in theories as well as practices. Supported by hundreds of bibliographies, this paper systemically details the development process of this subject, introduces main means to analyze this subject, and then gives brief remarks to each means respectively. Engineering geology qualitative analysis is the base of slopes dynamic responses study. Because of complexity of geological conditions, engineering geology qualitative analysis is very important in slopes stability study, especially to rock slopes with complex engineering geology conditions. Based on research fruits of forerunners, this paper summarizes factors influencing slopes dynamic stability into five aspects as geology background, stratums, rock mass structure, and topography as well as hydrogeology condition. Based on rock mass structure controlling theory, engineering geology model of the slope is grouped into two typical classes, one is model with obvious controlling discontinuities, which includes horizontal bedded slope, bedding slope, anti-dip slope, slide as well as slope with base rock and weathered crust; the other is model without obvious controlling discontinuities, which includes homogeneous soil slope, joint rock mass slope. Study on slope failure mechanism under dynamic force, the paper concludes that there are two effects will appear in slope during strong earthquake, one is earthquake inertia force, the other is ultra pore pressure buildup. The two effects lead to failure of the slope. To different types of slope failure, the intensity of two effects acting on the slope is different too. To plastic flow failure, pore pressure buildup is dominant; to falling rock failure and toppling failure, earthquake inertia force is dominant in general. This paper briefly introduces the principle of Lagrangian element method. Through a lot of numerical simulations with FLAC3D, the paper comprehensively studies dynamic responses of slopes, and finds that: if the slope is low, displacement, velocity and acceleration are linear enlarging with elevation increasing in vertical direction; if the slope is high enough, displacement, velocity and acceleration are not linear with elevation any more, on the other hand, they fluctuate with certain rhythm. At the same time, the rhythm appears in the horizontal direction in the certain area near surface of the slope. The distribution form of isoline of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, isoline of displacement, velocity and acceleration is parallel to the surface of the slope, in the mean time, the strike direction of the extreraum area is parallel to the surface of the slope too. Beyond this area, the isoline direction and the strike direction of the extremum area turn to horizontal with invariable distance. But the rhythm appearing or not has nothing to with the slope angle. The paper defines the high slope effect and the low slope effect of slopes dynamic responses, discusses the threshold height H^t of the dynamic high slope effect, and finds that AW is proportional to square root of the dynamic elastic moduli El P , at the same time, it is proportional to period Tof the dynamic input. Thus, the discriminant of H^t is achieved. The discriminant can tell us that to a slope, if its height is larger than one fifth of the wavelength, its response regular will be the dynamic high slope effect; on the other hand, its response regular will be the dynamic low slope effect. Based on these, the discriminant of different slopes taking on same response under the same dynamic input is put forward in this paper. At the same time, the paper studies distribution law of the rhythm extremum point of displacement, velocity and acceleration, and finds that there exists relationship of N = int among the slope height H, the number of the rhythm extremum VHlhro) point N and ffthre- Furthermore, the paper points out that if N^l, the response of the slope will be dynamic high slope effect; \fNseismic input used in the slope dynamic analysis is determined. Comprehensive studies are carried out on the slope, especially to its deep fractures, and then the paper concludes that the deep fractures of slope are the result of the combination unloading effect of gravity and tectonic stress. At the same time, the failure model of the slope under dynamic input is attained. Based on these, the stability is comprehensively studied for section IV-IV with numerical simulation method as well as method putting forward in chapter 5. At last, the paper concludes that under dynamic input, the section will slide along fault f9, some deep fractures and fault/5 with certain permanent displacement, and this must be taken into consideration in the engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mudstone reservoir is a subtle reservoir with extremely inhomogeneous, whose formation is greatly related to the existence of fracture. For this kind of reservoir, mudstone is oil source rock, cover rock and reservoir strata, reservoir type is various, attitude of oil layer changes greatly, and the distribution of oil and gas is different from igneous or clastic rock reservoir as well as from carbonate reservoir of self-producing and self-containing of oil and gas. No mature experience has been obtained in the description, exploration and development of the reservoir by far. Taking Zhanhua depression as an example, we studied in this thesis the tectonic evolution, deposit characteristics, diagenesis, hydrocarbon formation, abnormal formation pressure, forming of fissure in mudstone reservoir, etc. on the basis of core analysis, physical simulation, numerical simulation, integrated study of well logging and geophysical data, and systematically analyzed the developing and distributing of mudstone fissure reservoir and set up a geological model for the formation of mudstone fissure reservoir, and predicted possible fractural zone in studied area. Mudstone reservoir mainly distributed on the thrown side of sedimentary fault along the sloping area of the petroleum generatiion depression in Zhanhua depression. Growing fault controlled subsidence and sedimentation. Both the rate of subsidence and thickness of mudstone are great on the thrown side of growing fault, which result in the formation of surpressure in the area. The unlocking of fault which leads to the pressure discharges and the upward conduct of below stratum, also makes for the surpressure in mudstone. In Zhanhua depression, mudstone reservior mainly developed in sub-compacted stratum in the third segment of Shahejie formation, which is the best oil source rock because of its wide spread in distribution, great in thickness, and rich in organic matter, and rock types of which are oil source mudstone and shale of deep water or semi-deep water sediment in lacustrine facies. It revealed from core analysis that the stratum is rich in limestone, and consists of lamina of dark mudstone and that of light grey limestone alternately, such rock assemblage is in favor of high pressure and fracture in the process of hydrocarbon generation. Fracture of mudstone in the third segment of Shahejie formation was divided into structure fracture, hydrocarbon generation fracture and compound fracture and six secondary types of fracture for the fist time according to the cause of their formation in the thesis. Structural fracture is formed by tectonic movement such as fold or fault, which develops mainly near the faults, especially in the protrude area and the edge of faults, such fracture has obvious directivity, and tend to have more width and extension in length and obvious direction, and was developed periodically, discontinuously in time and successively as the result of multi-tectonic movement in studied area. Hydrocarbon generation fracture was formed in the process of hydrocarbon generation, the fracture is numerous in number and extensively in distribution, but the scale of it is always small and belongs to microfracture. The compound fracture is the result of both tectonic movement and hydrocarbon forming process. The combination of above fractures in time and space forms the three dimension reservoir space network of mudstone, which satellites with abnormal pressure zone in plane distribution and relates to sedimentary faces, rock combination, organic content, structural evolution, and high pressure, etc.. In Zhanhua depression, the mudstone of third segment in shahejie formation corresponds with a set of seismic reflection with better continuous. When mudstone containing oil and gas of abnormal high pressure, the seismic waveform would change as a result of absorb of oil and gas to the high-frequency composition of seismic reflection, and decrease of seismic reflection frequency resulted from the breakage of mudstone structure. The author solved the problem of mudstone reservoir predicting to some degree through the use of coherent data analysis in Zhanhua depression. Numerical modeling of basin has been used to simulate the ancient liquid pressure field in Zhanhua depression, to quantitative analysis the main controlling factor (such as uncompaction, tectonic movement, hydrocarbon generation) to surpressure in mudstone. Combined with factual geologic information and references, we analyzed the characteristic of basin evolution and factors influence the pressure field, and employed numerical modeling of liquid pressure evolution in 1-D and 2-D section, modeled and analyzed the forming and evolution of pressure in plane for main position in different periods, and made a conclusion that the main factors for surpressure in studied area are tectonic movement, uncompaction and hydrocarbon generation process. In Zhanhua depression, the valid fracture zone in mudstone was mainly formed in the last stage of Dongying movement, the mudstone in the third segment of Shahejie formation turn into fastigium for oil generation and migration in Guantao stage, and oil and gas were preserved since the end of the stage. Tectonic movement was weak after oil and gas to be preserved, and such made for the preserve of oil and gas. The forming of fractured mudstone reservoir can be divided into four different stages, i.e. deposition of muddy oil source rock, draining off water by compacting to producing hydrocarbon, forming of valid fracture and collecting of oil, forming of fracture reservoir. Combined with other regional geologic information, we predicted four prior mudstone fracture reservoirs, which measured 18km2 in area and 1200 X 104t in geological reserves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3D wave equation prestack depth migration is the effective tool for obtaining the exact imaging result of complex geology structures. It's a part of the 3D seismic data processing. 3D seismic data processing belongs to high dimension signal processing, and there are some difficult problems to do with. They are: How to process high dimension operators? How to improve the focusing? and how to construct the deconvolution operator? The realization of 3D wave equation prestack depth migration, not only realized the leap from poststack to prestack, but also provided the important means to solve the difficult problems in high dimension signal processing. In this thesis, I do a series research especially for the solve of the difficult problems around the 3D wave equation prestack depth migration and using it as a mean. So this thesis service for the realization of 3D wave equation prestack depth migration for one side and improve the migration effect for another side. This thesis expatiates in five departs. Summarizes the main contents as the follows: In the first part, I have completed the projection from 3D data point area to low dimension are using de big matrix transfer and trace rearrangement, and realized the liner processing of high dimension signal. Firstly, I present the mathematics expression of 3D seismic data and the mean according to physics, present the basic ideal of big matrix transfer and describe the realization of five transfer models for example. Secondly, I present the basic ideal and rules for the rearrange and parallel calculate of 3D traces, and give a example. In the conventional DMO focusing method, I recall the history of DM0 process firstly, give the fundamental of DMO process and derive the equation of DMO process and it's impulse response. I also prove the equivalence between DMO and prestack time migration, from the kinematic character of DMO. And derive the relationship between DMO base on wave equation and prestack time migration. Finally, I give the example of DMO process flow and synthetic data of theoretical models. In the wave equation prestak depth migration, I firstly recall the history of migration from time to depth, from poststack to prestack and from 2D to 3D. And conclude the main migration methods, point out their merit and shortcoming. Finally, I obtain the common image point sets using the decomposed migration program code.In the residual moveout, I firstly describe the Viterbi algorithm based on Markov process and compound decision theory and how to solve the shortest path problem using Viterbi algorithm. And based on this ideal, I realized the residual moveout of post 3D wave equation prestack depth migration. Finally, I give the example of residual moveout of real 3D seismic data. In the migration Green function, I firstly give the concept of migration Green function and the 2D Green function migration equation for the approximate of far field. Secondly, I prove the equivalence of wave equation depth extrapolation algorithms. And then I derive the equation of Green function migration. Finally, I present the response and migration result of Green function for point resource, analyze the effect of migration aperture to prestack migration result. This research is benefit for people to realize clearly the effect of migration aperture to migration result, and study on the Green function deconvolution to improve the focusing effect of migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the increasingly enlarged exploration target, deep target layer(especially for the reservoir of lava) is a potential exploration area. As well known, the reflective energy becomes weak because the seismic signals of reflection in deep layer are absorbed and attenuate by upper layer. Caustics and multi-values traveltime in wavefield are aroused by the complexity of stratum. The ratio of signal to noise is not high and the fold numbers are finite(no more than 30). All the factors above affect the validity of conventional processing methods. So the high S/N section of stack can't always be got with the conventional stack methods even if the prestack depth migration is used. So it is inevitable to develop another kind of stack method instead. In the last a few years, the differential solution of wave equation was hold up by the condition of computation. Kirchhoff integral method rose in the initial stages of the ninetieth decade of last century. But there exist severe problems in it, which is are too difficult to resolve, so new method of stack is required for the oil and gas exploration. It is natural to think about upgrading the traditionally physic base of seismic exploration methods and improving those widely used techniques of stack. On the other hand, great progress is depended on the improvement in the wave differential equation prestack depth migration. The algorithm of wavefield continuation in it is utilized. In combination with the wavefield extrapolation and the Fresnel zone stack, new stack method is carried out It is well known that the seismic wavefield observed on surface comes from Fresnel zone physically, and doesn't comes from the same reflection points only. As to the more complex reflection in deep layer, it is difficult to describe the relationship between the reflective interface and the travel time. Extrapolation is used to eliminate caustic and simplify the expression of travel time. So the image quality is enhanced by Fresnel zone stack in target. Based on wave equation, high-frequency ray solution and its character are given to clarify theoretical foundation of the method. The hyperbolic and parabolic travel time of the reflection in layer media are presented in expression of matrix with paraxial ray theory. Because the reflective wave field mainly comes from the Fresnel Zone, thereby the conception of Fresnel Zone is explained. The matrix expression of Fresnel zone and projected Fresnel zone are given in sequence. With geometrical optics, the relationship between object point in model and image point in image space is built for the complex subsurface. The travel time formula of reflective point in the nonuniform media is deduced. Also the formula of reflective segment of zero-offset and nonzero offset section is provided. For convenient application, the interface model of subsurface and curve surface derived from conventional stacks DMO stack and prestack depth migration are analyzed, and the problem of these methods was pointed out in aspects of using data. Arc was put forward to describe the subsurface, thereby the amount of data to stack enlarged in Fresnel Zone. Based on the formula of hyperbolic travel time, the steps of implementation and the flow of Fresnel Zone stack were provided. The computation of three model data shows that the method of Fresnel Zone stack can enhance the signal energy and the ratio of signal to noise effectively. Practical data in Xui Jia Wei Zhi, a area in Daqing oilfield, was processed with this method. The processing results showed that the ability in increasing S/N ratio and enhancing the continuity of weak events as well as confirming the deep configuration of volcanic reservoir is better than others. In deeper target layer, there exists caustic caused by the complex media overburden and the great variation of velocity. Travel time of reflection can't be exactly described by the formula of travel time. Extrapolation is bring forward to resolve the questions above. With the combination of the phase operator and differential operator, extrapolating operator adaptable to the variation of lateral velocity is provided. With this method, seismic records were extrapolated from surface to any different deptlis below. Wave aberration and caustic caused by the inhomogenous layer overburden were eliminated and multi-value curve was transformed into the curve.of single value. The computation of Marmousi shows that it is feasible. Wave field continuation extends the Fresnel Zone stack's application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil and scientific groups have been focusing on the 3D wave equation prestack depth migration since it can solve the complex problems of the geologic structure accurately and maintain the wave information, which is propitious to lithology imaging. The symplectic method was brought up by Feng Kang firstly in 1984 and became the hotspot of numerical computation study. It will be widely applied in many scientific field of necessity because of its great virtue in scientific sense. This paper combines the Symplectic method and the 3-D wave equation prestack depth migration to bring up an effectual numerical computation method of wave field extrapolatation technique under the scientific background mentioned above. At the base of deep analysis of computation method and the performance of PC cluster, a seismic prestack depth migration flow considering the virtue of both seismic migration method and Pc cluster has formatted. The software, named 3D Wave Equation Prestack Depth Migration of Symplectic Method, which is based on the flow, has been enrolled in the National Bureau of Copyright (No. 0013767). Dagang and Daqing Oil Field have now put it into use in the field data processing. In this paper, the one way wave equation operator is decompounded into a phase shift operator and a time shift operator and the correct item with high rank Symplectic method when approaching E exponent. After reviewing eliminating alias frequency of operator, computing the maximum angle of migration and the imaging condition, we present the test result of impulse response of the Symplectic method. Taking the imaging results of the SEG/EAGE salt and overthrust models for example and seeing about the imaging ability with complex geologic structure of our software system, the paper has discussed the effect of the selection of imaging parameters and the effectuation on the migration result of the seismic wavelet and compared the 2-D and 3-D prestack depth migration result of the salt mode. We also present the test result of impulse response with the overthrust model. The imaging result of the two international models indicates that the Symplectic method of 3-D prestack depth migration accommodates great transversal velocity variation and complex geologic structure. The huge computing cost is the key obstruction that 3-D prestack depth migration wave equation cannot be adopted by oil industry. After deep analysis of prestack depth migration flow and the character of PC cluster ,the paper put forward :i)parallel algorithms in shot and frequency domain of the common shot gather 3-D wave equation prestack migration; ii)the optimized setting scheme of breakpoint in field data processing; iii)dynamic and static load balance among the nodes of the PC cluster in the 3-D prestack depth migration. It has been proven that computation periods of the 3-D prestack depth migration imaging are greatly shortened given that adopting the computing method mentioned in the paper. In addition,considering the 3-D wave equation prestack depth migration flow in complex medium and examples of the field data processing, the paper put the emphasis on: i)seismic data relative preprocessing, ii) 2.5D prestack depth migration velocity analysis, iii)3D prestack depth migration. The result of field data processing shows satisfied application ability of the flow put forward in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation that includes most of the P. PH.D research work during 2001~2002 covers the large-scale distribution of continental earthquakes in mainland China, the mechanism and statistic features of grouped strong earthquakes related to the tidal triggering, some results in earthquake prediction with correlativity analysis methods, and the flushes from the two strong continental earthquakes in South Asia in 2001. Mainland China is the only continental sub-plate that is compressed by collision boundaries at its two sides, within which earthquakes are dispersive and distributed as seismic belts with different widths. The control capability of the continental block boundaries on the strong earthquakes and seismic hazards is calculated and analyzed in this dissertation. By mapping the distribution of the 31282 ML:3s2,0 earthquakes, I found that the depth of continental earthquakes depend on the tectonic zonings. The events on the boundaries of relatively integrated blocks are deep and those on the new-developed ruptures are shallow. The average depth of earthquakes in the West of China is about 5km deeper than that in the east. The western and southwestern brim of Tarim Basin generated the deepest earthquakes in mainland China. The statistic results from correlation between the grouped M7 earthquakes and the tidal stress show that the strong events were modulated by tidal stress in active periods. Taking Taiwan area as an example, the dependence of moderate events on the moon phase angles (£>) is analyzed, which shows that the number of the earthquakes in Taiwan when D is 50° ,50° +90° and 50° +180° is more than 2 times of standard deviation over the average frequency at each degree, corresponding to the 4th, 12th and 19th solar day after the new moon. The probability of earthquake attack to the densely populated Taiwan island on the 4th solar day is about 4 times of that on other solar days. On the practice of earthquake prediction, I calculated and analyzed the temporal correlation of the earthquakes in Xinjinag area, Qinghai-Tibet area, west Yunnan area, North China area and those in their adjacent areas, and predicted at the end of 2000 that it would be a special time interval from 2001 to 2003, within which moderate to strong earthquakes would be more active in the west of China. What happened in 2001 partly validated the prediction. Within 10 months, there were 2 great continental earthquakes in south Asia, i.e., the M7.8 event in India on Jan 26 and M8.1 event in China on Nov. 14, 2001, which are the largest earthquake in the past 50 years both for India and China. No records for two great earthquakes in Asia within so short time interval. We should speculate the following aspects from the two incidences: The influence of the fallacious deployment of seismic stations on the fine location and focal mechanism determination of strong earthquakes must be affronted. It is very important to introduce comparative seismology research to seismic hazard analysis and earthquake prediction research. The improvement or changes in real-time prediction of strong earthquakes with precursors is urged. Methods need to be refreshed to protect environment and historical relics in earthquake-prone areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sangequan Uplift in Junggar Basin is an inherited positive structure, which has undergone many times of violent tectonic movements, with high tectonic setting, and far away from the oil-source sag, reservoir forming condition is complex. Combining sequence stratigraphy, depositional facies, reservoir formation theory with seismic and well logging analysis, this paper conducted integrated study on the hydrocarbon migration, accumulation, entrapment conditions, the reservoir forming dynamics and the forming model, and acquired the following recognition: (1) The special reservoir formation conditions that enable Sangequan Uplift to form a giant oil-gas field of over 100 million tons of reserves are as follows: (D Deltaic frontal sandbody is developed in Jurassic Xishanyao Formation, Toutunhe Formation and Lower Cretaceous Hutubihe Formation, with good reservoir quality;? Abundant hydrocarbon resources are found in Western Well Pen-1 Sag, which provides sufficient oil sources for reservoir formation of Sagequan Uplift; ?The unconformity-fault-sandbody system has formed a favorable space transporting system and an open conduit for long-distance hydrocarbon migration; ?fault, low amplitude anticline and lithological traps were well developed, providing a favorable space for hydrocarbon accumulation. (2) The most significant source beds in the Western Well Pen-1 Sag are the Mid-Permian Lower Wuerhe Formation and Lower-Permian Fengcheng Formation. The oil in the Well Block Lu-9 and Shinan Oilfield all originated from the hydrocarbon source beds of Fengcheng Formation and Lower Wuerhe Formation in the Western Well Pen-1 Sag and migrated through Jidong and Jinan deep faults linking unconformity of different regions from sources to structural highs of the uplift and shallow horizons. (3) There were 2 reservoir formation periods in District Sangequan: the first was in late Cretaceous during which the upper part of Xishanyao Formation and Toutunhe Formation; the second was in Triassic, the main resources are high-maturity oil and gas from Fengcheng Formation and Wuerhe Formation in Western Pen-1 Well sag and the gas from coal measure strata of Xishanyao Formation, that were accumulated in Hutubihehe Formation. (4) Model of the hydrocarbon migration, accumulation, reservoir formation of the study area are categorized as three types starting from the hydrocarbon source areas, focusing on the faults and unconformity and aiming at reservoirs: ① Model of accumulation and formation of reservoir through faults or unconformities along the "beam" outside source; ②Model of migration, accumulation and reservoir formation through on-slope near source;③Model of migration, accumulation and reservoir formation of marginal mid-shallow burial biogas-intermediate gas. (5) Pinchout, overlap and lithologic traps are developed in transitional zones between Western Well Pen-1 sag and Luliang uplift. Many faulted blocks and faulted nose-like traps are associated with large structures on Sangequan uplift. Above traps will be new prospecting areas for further hydrocarbon exploration in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studies of this paper is an important part of the "ninth five" science&technology-tackling project of CNPC -The oil and gas distribution regulation and the aims of explortion in jizhong depression. Basing on the former research results, with the materials of regional structural setting, major tectonic movements, bi-and tri-dimension seismic sections, oil well sections and reservoir sections, this paper involves studies of tectonic evolution, sedimentarv evolution, magma movement and reservoir prediction. The existence of huge stripping and gliding nappe is proved in the RaoYang Sag for the frist time. The properties, development, evolution and the relationship with reservoir of the stripping and gliding nappe are discussed in details in this paper. It is also talked about the affects of stripping and nappes to oil and gas exploration theoretically and practically in the paper. The marking attributes of the stripping and gliding nappe includes stripping and gliding plane, two deformation systems, stratigraphic repeat and hiatus close to the stripping and gliding plane, and the deformation attributes in the front and back of stripping and gliding nappe. The RaoYang stripping and gliding nappes can be divided into different belts in north-south direction and different zones in east-west direction. RaoYang Stripping and gliging nappes took place in the late Paleogene period and before the sedimentation of Neogene period. The sliding direction is NWW. The sliding distance is about 6km. The geothermal gradient in the separating slump area is low and stable. The formation of the stripping and gliding nappes is due to the regional structural setting, the sediments of Paleogene system, the soft roof and the uneven rising movement of structure units. The evolution of the stripping and gliding nappes can be divided into the following stages: regional differential elevation and subsidence, unstable gravity and gravitational sliding, the frist wholly stripping faults and sliding stage, and the following second and third stripping faults and sliding stages. The identification of RaoNan stripping and gliding nappes has an important role on the research of regional structure and oil and gas exploration. Basing on the properties of stripping and gliding nappes, we can identtify the gliding fractures, ductile compressional folds, the front and back structures of gliding nappes and gliding plane covered structures. Combination with different reservoir forming conditions, these structures can lead to different categories of reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central uplift in the Huimin depression is famous for its large amounts of faults and small-scale fault-block area, and it is the famed typical complicated fault-block group oil & gas field in the whole world. After many years of rolling exploration and exploitation, many complex oil &gas field have been discovered in the central uplift, and won the splendent fruit. With the gradual deepening and development of the rolling exploitation, the exploration faces more and more difficulties. Therefore, it is important to reveal the forming mechanism and distributing rule of the complex fault-block reservoir, and to realize the forecast of the complex fault-block reservoir, sequentially, expedite the exploration step. This article applies the new multi-subject theory, method and technique such as structure geometry, kinematics, dynamics, structural stress field, fluid potential field, well logging record and constrained inversion of seismic records, coherence analysis, the seal mold and seal history of oil-bounded fault etc, and try to reveal the forming mechanism and distributing law of the complex fault-block reservoir, in result, implements the forecast of the fault-block reservoir and the remaining oil distributing. In order to do so, this article synthetically carries out structural estimate, reservoir estimate, fault sealing history estimate, oil-bearing properties estimate and residual. This article also synthetically researches, describes and forecast the complex fault-block in Huimin depression by use of the techniques, e.g. seismetic data post-stack processing technique, multi-component demarcating technique, elaborate description technique for the fault-block structure, technique of layer forecasting, fault sealing analysis technique, comprehensive estimate technique of fault-block, comprehensive analysis and estimate technique of remaining oil etc. The activities of the faults varies dramatically in the Huimin depression, and most of the second-class and the third-class faults are contemporaneous faults, which control the macroscopical distribution of the reservoir in the Huimin depression. The fourth-class faults cause the complication between the oil & gas among the fault-blocks. The multi-period strong activities of the Linyi fracture resulted in the vertical migration of large amount of oil & gas along with the faults. This is the main reason for the long vertical distribution properties near the Linyi fracture in the Huimin depression. The sealing ability of the fault is controlled by the property,size and direction of the main stress, the contact relationship of the both sides of the fault, the shale polluting factor, and the configuration relationship between the fault move period and the migration period of oil & gas. The article suggest four fault-sealing modes in the research zone for the first time, which establishes the foundation for the further forecast of the complex fault-block reservoir. Numerical simulation of the structural stress field reveals the distribution law and the evolvement progress of the three-period stress field from the end of the Dongying period to the Guantao period to nowadays. This article puts forward that the Linyi and Shanghe regions are the low value of the maximum main stress data. This is combined with the fault sealing history estimate, then multi-forming-reservoir in the central uplift is put forward. In the Shanghe oilfield, the article establishes six reservoir geological modes and three remaining oil distributing modes(the plane, the inside layer and the interlayer), then puts forward six increase production measure to enhance the remaining oil recovery ratio. Inducting the exploitation of oilfield, it wins notable economic effects and social effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in Gubei depression, this paper builds high resolution sequence stratigraphic structure, sedimentary system, sandbody distribution, the effect of tectonic in sequence and sedimentary system evolution and model of tectonic-lithofacies. The pool formation mechanism of subtle trap is developed. There are some conclusions and views as follows. 1.With the synthetic sequence analysis of drilling, seismic, and well log, the highly resolution sequence structure is build in Gubei depression. They are divided two secondary sequences and seven three-order sequences in Shahejie formation. They are include 4 kinds of system traces and 7 kinds of sedimentary systems which are alluvial fan, under water fan, alluvial fan and fan-delta, fan-delta, lacustrine-fan, fluvial-delta-turbidite, lakeshore beach and bar, and deep lake system. Sandbody distribution is show base on third order sequence. 2.Based on a lot of experiment and well log, it is point out that there are many types of pore in reservoir with the styles of corrosion pore, weak cementing, matrix cementing, impure filling, and 7 kinds of diagenetic facies. These reservoirs are evaluated by lateral and profile characteristics of diagenetic facies and reservoir properties. 3.The effect of simultaneous faulting on sediment process is analyzed from abrupt slope, gentle slope, and hollow zone. The 4 kinds of tectonic lithofacies models are developed in several periods in Gubei depression; the regional distribution of subtle trap is predicted by hydro accumulation characteristics of different tectonic lithofacies. 4.There are 4 types of compacting process, which are normal compaction, abnormal high pressure, abnormal low pressure and complex abnormal pressure. The domain type is normal compaction that locates any area of depression, but normal high pressure is located only deep hollow zone (depth more than 3000m), abnormal low pressures are located gentle slope and faulted abrupt slope (depth between 1200~2500m). 5.Two types dynamic systems of pool formation (enclosed and partly enclosed system) are recognized. They are composed by which source rocks are from Es3 and Es4, cap rocks are deep lacustrine shale of Esl and Es3, and sandstone reservoirs are 7 kinds of sedimentary system in Es3 and Es4. According to theory of petroleum system, two petroleum systems are divided in Es3 and Es4 of Gubei depression, which are high or normal pressure self-source system and normal or low pressure external-source system. 6.There are 3 kinds of combination model of pool formation, the first is litholgical pool of inner depression (high or normal pressure self-source type), the second is fault block or fault nose pool in marginal of depression (normal type), the third is fault block-lithological pool of central low lifted block (high or normal pressure type). The lithological pool is located central of depression, other pool are located gentle or abrupt slope that are controlled by lithological, faulting, unconfirmed. 7.This paper raise a new technique and process of exploration subtle trap which include geological modeling, coring description and logging recognition, and well log constrained inversion. These are composed to method and theory of predicting subtle trap. Application these methods and techniques, 6 hydro objects are predicted in three zone of depression.