1000 resultados para Sea
Resumo:
The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea-mud region. The sulfate reducing bacteria (SRB) in the sea-mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea-mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea-mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea-mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea-mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.
Resumo:
The in-situ study of steel corrosion in sea bottom sediment (SBS) was carried out by Transplanting Burying Plate method (TBP method). It was found that the corrosion rate of steel in the sea bottom sediment with sulfate reducing bacteria (SRB) could be as high as ten times of that in sea bottom sediment without SRB. The experiments in simulated sea bottom sediments with different SRB contents by artificial culturing showed that the electrochemical behavior of steel in the sea bottom sediment with SRB was different from that without SRB. SRB altered the polarization behavior of steel significantly. The environment was acidified due to the activity of SRB and the corrosion of steel was accelerated. The corrosion of carbon steel in sea bottom sediment is anaerobic corrosion, and the main factor is anaerobe. There are SRB commonly in SBS, and the amount of SRB decreases along with the depth of sediment. Because of the asymmetry and variation of sea bottom sediment, the most dangerous corrosion breakage of steel in SBS is local corrosion caused by SRB. So the main countermeasure of corrosion protection of sea bottom steel facilities should be controlling of the corrosion caused by anaerobe.
Resumo:
The corrosion rate of low alloy steel in different sea zones has close correlation with the content of the alloy element. From the field data of steel corrosion rates in atmospheric zone, splash zone and immersion zone, regression analysis was used to study the correlation between the corrosion rate of steels and the amount of added alloy elements. Three regression equations were obtained in different sea zones. Based on the equations, the anti-corrosion performance of the alloy elements can be deduced which can be used to screen out low alloy steel with good anti-corrosion performance. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM).combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.
Resumo:
It was found that the corrosion rate of steel in the sea mud with sulfate-reducing bacteria (SRB) could be as high as 10 times of that in the sea mud without SRB. And the hydrogen permeation reaction would occur when metals were corroded. So it is necessary to investigate the effect of living SRB on hydrogen permeation in the sea mud. Cathodic potential was often added to metals in order to protect them. But hydrogen permeation could be affected by the cathodic potential. So it is also necessary to study the effect of cathodic potential on hydrogen permeation. In this paper, the hydrogen permeation actions of APT X56 steel in the sea mud with and without SRB at corrosion and cathodic potential were studied with an improved Devanathan-Stachurski's electrolytic cell. Experimental results showed that during the growth of SRB, the current density curve of hydrogen permeation was accordant with the growth curve of SRB. But the hydrogen permeation current density of APT X56 steel hardly changed in the sterilized sea mud. Compared with the hydrogen permeation current density of APT X56 steel in the sterilized sea mud, the hydrogen permeation of APT X56 steel in the sea mud could be accelerated by living SRB. Experimental results also showed that the hydrogen permeation current density increased rapidly when the cathodic potential was added to the three-electrode system of the cathodic cell, and then the hydrogen permeation current density could obtain a stable value slowly. So the cathodic potential added to the cathodic cell could accelerate hydrogen permeation.
Resumo:
Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-TibetanPlateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1 alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan- Plateau mammals andsea- level mice after injection of CoCl2 (20, 40, or 60 mg/ kg) and normobaric hypoxia (16.0% O-2, 10.8% O-2, and 8.0% O-2) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl2 markedly increased 1) HIF-1 alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl2 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1 alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae. Results suggest that 1) HIF-1 alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl2 induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl2 reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau- acclimatized mammals.
Resumo:
Integrating connectivity patterns into marine ecosystem management is a fundamental step, specially for stock subjected to the combined impacts of human activities (overfishing, habitat degradation, etc.) and climate changes. Thus, management of marine resources must incorporates the spatial scales over which the populations are connected. Notwithstanding, studying these dynamics remains a crucial and hard task and the predictions of the temporal and spatial patterns of these mechanisms are still particularly challenging. This thesis aims to puzzle over the red mullet Mullus barbatus population connectivity in the Western Mediterranean Sea, by implementing a multidisciplinary approach. Otolith sclerochronology, larval dispersal modelling and genetic techniques were gathered in this study. More particularly, this research project focused on early life history stages of red mullet and their role in the characterization of connectivity dynamics. The results show that M. barbatus larval dispersal distances can reach a range of 200 km. The differences in early life traits (i.e. PLD, spawning and settlement dates) observed between various areas of the Western Mediterranean Sea suggest a certain level of larval patchiness, likely due to the occurrence of different spawning pulses during the reproductive period. The dispersal of individuals across distant areas, even not significant in demographic terms, is accountable for the maintenance of the genetic flow among different demes. Fluctuations in the level of exchange among different areas, due to the variability of the source-sink dynamics, could have major implications in the population connectivity patterns. These findings highlight the reliability of combining several approaches and represent a benchmark for the definition of a proper resource management, with considerable engagements in effectively assuring the beneficial effects of the existent and future conservation strategies.
Resumo:
http://www.archive.org/details/atseandinportorl00hineiala
Resumo:
This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity
Resumo:
The soft shell clam, Mya arenaria, and the razor clam, Ensis siliqua, are widely distributed in Irish waters. Though the reproductive biology and other aspects of the physiology of these species has been previously investigated, little or no data are currently available on their health status. As this knowledge is essential for correct management of a species, M. arenaria and E. siliqua were examined to assess their current health status using histological and molecular methods, over a period of sixteen months. No pathogens or disease were observed in M. arenaria, and low incidences of Prokaryote inclusions, trematode parasites, Nematopsis spp. and eosinophilic bodies were recorded in razor clams for the first time in Northern European waters.
Resumo:
Knowledge of the reproductive cycle of a species is a prerequisite for sustainable management of a fishery. The infaunal marine bivalve, Ensis siliqua, is a commercially important species in Europe, and is exploited in many countries, including Ireland, where it is sold by wet weight. Seasonal variations in the reproductive cycle of subtidal razor clams from the Skerries region of the Irish Sea, an important fisheries area, were examined between June 2010 and September 2011 while monitoring weight. Histological examination revealed that the E. siliqua sex-ratio was not different from parity, and no hermaphrodites were observed in the samples collected. In the summer months of 2010 all female clams were either spent or in early development, with just a small percentage of males still spawning. The gonads of both sexes developed over the autumn and winter months of 2010, with the first spawning individuals recorded in January 2011. Spawning peaked in March 2011, but unlike in 2010, spawning continued through June and July with all animals spent in August 2011. The earlier and longer spawning period found in this species in 2011 compared to 2010 may have been due to the colder than normal temperature observed during the winter of 2010 plus the relatively warmer temperatures of Spring 2011, which could have affected the gametogenic development of E. siliqua in the Irish Sea. It was noted that wet weight dropped in the summer months of both years, immediately after the spawning period which may impact on the practicality of fishing for this species during this period. Timing of development and spawning is compared with other sites in the Irish Sea and elsewhere in Europe, including the Iberian Peninsula.