918 resultados para SUSTAINED-RELEASE
Resumo:
BACKGROUND: In tuberculosis (TB), the risk of exposure is determined mainly by the proximity to and the hours of direct contact with an infectious patient. We describe the contact investigation after detection of an infectious form of TB in a military camp using an Interferon-g-Release-Assay (IGRA, QuantiFERON-TB Gold In Tube [QTF-GIT]) eight weeks after detection of the index case. INDEX PATIENT: The index patient presented with fever, cough and weight loss in the military hospital six weeks after entering the camp. TB was suspected and anti-tuberculous therapy given immediately. Subsequently, TB was microbiologically confirmed. METHODS: Four exposure groups were formed a priori based on the proximity and the hours of direct contact to the index case. 168 (95.5%) agreed to be investigated: - Group A: sharing the same dormitory (15 persons) - Group B: same platoon, but not sharing the dormitory (20 persons) - Group C: staff and patients of the military hospital (22 persons) - Group D: other three platoons and senior military staff (111 persons). RESULTS: 34 (20.2%) out of 168 contacts tested positive in the QFT-GIT assay. For the exposure groups, the respective QFT-GIT testing results were: group A, 14/15 (93%); group B, 4/20 (20%); group C, 5/22 (22.7%); and group D, 11/111 (9.9%). No secondary TB cases were identified. CONCLUSIONS: In our study, test results show a correlation with the risk of exposure, suggesting that IGRA may be useful for the assessment of TB infection in TB contacts. The high mobility of recruits reduced traceability of contacts. In this context, QFT-GIT allowed for an efficient screening of contacts at a single time point.
Resumo:
Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.