923 resultados para STEPWISE
Resumo:
Bonelli’s eagle, Hieraaetus fasciatus , has recently suffered a severe population decline and is currently endangered. Spain supports about 70% of the European population. We used stepwise logistic regression on a set of environmental, spatial and human variables to model Bonelli’s eagle distribution in the 5167 UTM 10 × 10 km quadrats of peninsular Spain. We obtained a model based on 16 variables, which allowed us to identify favourable and unfavourable areas for this species in Spain, as well as intermediate favourability areas. We assessed the stepwise progression of the model by comparing the model’s predictions in each step with those of the final model, and selected a parsimonious explanatory model based on three variables — slope, July temperature and precipitation — comprising 76% of the predictive capacity of the
Resumo:
We analysed the viscera of 321 red foxes collected over the last 30 years in 34 of the 47 provinces of peninsular Spain, and identified their helminth parasites. We measured parasite diversity in each sampled province using four diversity indices: Species richness, Marg a l e f’s species richness index, Shannon’s species diversity index, and inverse Simpson’s index. In order to find geographical, environmental, and/or human-related predictors of fox parasite diversity, we recorded 45 variables related to topography, climate, lithology, habitat heterogeneity, land use, spatial situation, human activity, sampling effort, and fox presence probability (obtained after environmental modelling of fox distribution). We then performed a stepwise linear regression of each diversity index on these variables, to find a minimal subset of statistically significant variables that account for the variation in each diversity index. We found that most parasite diversity indices increase with the mean distance to urban centres, or in other words, foxes in more rural provinces have a more diverse helminth fauna. Sampling effort and fox presence probability (probably related to fox density) also appeared as conditioning variables for some indices, as well as soil permeability (related with water availability). We then extrapolated the models to predict these fox parasite diversity indices in non-sampled provinces and have a view of their geographical trends.
Resumo:
We used the results of the Spanish Otter Survey of 1994–1996, a Geographic Information System and stepwise multiple logistic regression to model otter presence/absence data in the continental Spanish UTM 10 10-km squares. Geographic situation, indicators of human activity such as highways and major urban centers, and environmental variables related with productivity, water availability, altitude, and environmental energy were included in a logistic model that correctly classified about 73% of otter presences and absences. We extrapolated the model to the adjacent territory of Portugal, and increased the model’s spatial resolution by extrapolating it to 1 1-km squares in the whole Iberian Peninsula. The model turned out to be rather flexible, predicting, for instance, the species to be very restricted to the courses of rivers in some areas, and more widespread in others. This allowed us to determine areas where otter populations may be more vulnerable to habitat changes or harmful human interventions. # 2003 Elsevier Ltd. All rights reserved.
Resumo:
In a previous survey of otters ( Lutra lutra L. 1758) in Spain, different causes were invoked to explain the frequency of the species in each province. To find common causes of the distribution of the otter in Spain, we recorded a number of spatial, environmental and human variables in each Spanish province. We then performed a stepwise linear multiple regression of the proportion of positive sites of otter in the Spanish provinces separately on each of the three groups of variables. Geographic longitude, January air humidity, soil permeability and highway density were the variables selected. A linear regression of the proportion of otter presence on these variables explained 62.4% of the variance. We then used the selected variables in a partial regression analysis to specify which proportions of the variation are explained exclusively by spatial, environmental and human factors, and which proportions are attributable to interactions between these components. Pure environmental effects accounted for only 5.5% of the variation, while pure spatial and pure human effects explained 18% and 9.7%, respectively. Shared variation among the components totalled 29.2%, of which 10.9% was explained by the interaction between environmental and spatial factors. Human factors explained globally less variance than spatial and environmental ones, but the pure human influence was higher than the pure environmental one. We concluded that most of the variation in the proportion of occurrences of otter in Spanish provinces is spatially structured, and that environmental factors have more influence on otter presence than human ones; however, the human influence on otter distribution is less structured in space, and thus can be more disruptive. This effect of large infrastructures on wild populations must be taken into account when planning large-scale conservation policies
Resumo:
Remote sensing is a promising approach for above ground biomass estimation, as forest parameters can be obtained indirectly. The analysis in space and time is quite straight forward due to the flexibility of the method to determine forest crown parameters with remote sensing. It can be used to evaluate and monitoring for example the development of a forest area in time and the impact of disturbances, such as silvicultural practices or deforestation. The vegetation indices, which condense data in a quantitative numeric manner, have been used to estimate several forest parameters, such as the volume, basal area and above ground biomass. The objective of this study was the development of allometric functions to estimate above ground biomass using vegetation indices as independent variables. The vegetation indices used were the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Simple Ratio (SR) and Soil-Adjusted Vegetation Index (SAVI). QuickBird satellite data, with 0.70 m of spatial resolution, was orthorectified, geometrically and atmospheric corrected, and the digital number were converted to top of atmosphere reflectance (ToA). Forest inventory data and published allometric functions at tree level were used to estimate above ground biomass per plot. Linear functions were fitted for the monospecies and multispecies stands of two evergreen oaks (Quercus suber and Quercus rotundifolia) in multiple use systems, montados. The allometric above ground biomass functions were fitted considering the mean and the median of each vegetation index per grid as independent variable. Species composition as a dummy variable was also considered as an independent variable. The linear functions with better performance are those with mean NDVI or mean SR as independent variable. Noteworthy is that the two better functions for monospecies cork oak stands have median NDVI or median SR as independent variable. When species composition dummy variables are included in the function (with stepwise regression) the best model has median NDVI as independent variable. The vegetation indices with the worse model performance were EVI and SAVI.
Resumo:
Bonelli’s eagle, Hieraaetus fasciatus , has recently suffered a severe population decline and is currently endangered. Spain supports about 70% of the European population. We used stepwise logistic regression on a set of environmental, spatial and human variables to model Bonelli’s eagle distribution in the 5167 UTM 10 × 10 km quadrats of peninsular Spain. We obtained a model based on 16 variables, which allowed us to identify favourable and unfavourable areas for this species in Spain, as well as intermediate favourability areas. We assessed the stepwise progression of the model by comparing the model’s predictions in each step with those of the final model, and selected a parsimonious explanatory model based on three variables — slope, July temperature and precipitation — comprising 76% of the predictive capacity of the
Resumo:
Abstract: The objectives of this study were to evaluate the combined effects of soil bioticand abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two typesofsewagesludge intosoil ina 5-years field assay under tropical conditions and topredict the effectsof these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. Amultiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil.
Resumo:
Il presente lavoro di tesi si inserisce nell’ambito degli studi finalizzati al miglioramento delle condizioni di stabilità degli esoscheletri attivi per gli arti inferiori. L’obiettivo principale di questa tesi è la stima in tempo reale dell’orientamento degli arti superiori a partire dalle grandezze in uscita dall’esoscheletro e da un sistema di sensori inerziali indossabili. Il primo capitolo descrive lo stato dell’arte degli esoscheletri per gli arti inferiori seguita da una breve analisi degli studi compiuti dalla ricerca per il controllo dell’equilibrio del sistema uomo-macchina con l’impiego di metodi diversi. Nel secondo capitolo viene presentato il modello biomeccanico uomo-esoscheletro-stampelle, le strategie utilizzate per il controllo dell’equilibrio del sistema, ed i metodi impiegati per la stima dell’orientamento delle braccia del soggetto. Nel terzo capitolo vengono riportati e discussi i risultati dell’applicazione dei metodi di stima della cinematica degli arti superiori che vengono ripresi nelle conclusioni nel quarto capitolo.