942 resultados para SPATIAL CORRELATION
Resumo:
An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0–45°N and 60–105°E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (1°91°) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earth- quakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the website http://www.civil.iisc.ernet.in/*sreevals/resource.htm.
Resumo:
Cascading energy landscapes through funneling has been postulated as a mechanistic route for achieving the lowest energy configuration of a macromolecular system (such as proteins and polymers). In particular, understanding the molecular mechanism for the melting and crystallization of polymers is a challenging fundamental question. The structural modifications that lead to the melting of poly(ethylene glycol) (PEG) are investigated here. Specific Raman bands corresponding to different configurations of the PEG chain have been identified, and the molecular structural dynamics of PEG melting have been addressed using a combination of Raman spectroscopy, 2D Raman correlation and density functional theory (DFT) calculations. The melting dynamics of PEG have been unambiguously explained along the C-O bond rotation coordinate.
Resumo:
Curcumin and sulfathiazole exist as three and five polymorphs, respectively. We correlate solubility and mechanical properties in these polymorphic systems. It is seen that hardness (H) is inversely proportional to the solubility of a polymorph. H of the polymorphs is explained on the basis of slip planes in the crystal structure, the Schmid factor (m), and the relative orientation of molecules with respect to the nanoindenter direction. Effectively, H is a useful parameter (compared to melting point, T-m, and density, rho) that correlates well with the solubility of a polymorph. Such a correlation is helpful in systems like curcumin and sulfathiazole in which the Gibbs free energy of the polymorphs are close to one another. To summarize, a softer polymorph is more soluble.
Resumo:
The question of whether the dramatic slowing down of the dynamics of glass-forming liquids near the structural glass transition is caused by the growth of one or more correlation lengths has received much attention in recent years. Several proposals have been made for both static and dynamic length scales that may be responsible for the growth of timescales as the glass transition is approached. These proposals are critically examined with emphasis on the dynamic length scale associated with spatial heterogeneity of local dynamics and the static point-to-set or mosaic length scale of the random first order transition theory of equilibrium glass transition. Available results for these length scales, obtained mostly from simulations, are summarized, and the relation of the growth of timescales near the glass transition with the growth of these length scales is examined. Some of the outstanding questions about length scales in glass-forming liquids are discussed, and studies in which these questions may be addressed are suggested.
Correlation between Optical Properties and Nanomorphology of Fluoranthene-Based Conjugated Copolymer
Resumo:
Nanoparticles of conjugated polymers are receiving attention due to their interesting optical properties. Here we report nanoparticles of fluoranthene-based conjugated copolymer prepared by the Suzuki coupling reaction. The copolymer forms nanoparticles by the spontaneous self-assembly after evaporation of organic solvent. The mean diameter of the nanoparticles can be manipulated by varying solvent composition. We investigated the parameters that govern the nanostructured morphology of polymer by systematic variation of good and poor solvent. The UV vis and time-resolved fluorescence spectroscopy measurement reveal the use of poor solvent in the organization of nanostructures. Furthermore, transmission electron microscopy highlights the importance of rigidity of the polymer backbone in morphological development.
Resumo:
We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation g(2)(tau)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth M(tau)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(tau). The modulation depth M(tau(i)) at any delay time tau(i) can be measured by short-time Fourier transform of g(2)(tau) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(tau) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(omega), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(omega) corresponding to these regions from the measured region specific M(tau(i))vs tau(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of tau, the match was good only in the initial transients in regard to experimental measurements with ultrasound.
Resumo:
A combined set of thermo-mechanical steps recommended for high strength beta Ti alloy are homogenization, deformation, recrystallization, annealing and ageing steps in sequence. Recrystallization carried out above or below beta transus temperature generates either beta annealed (lath type morphology of alpha) or bimodal (lath+globular morphology of alpha) microstructure. Through variations in heat treatment parameters at these processing steps, wide ranges of length scales of features have been generated in both types of microstructures in a near beta Ti alloy, Ti-5Al-5Mo-5V-3Cr (Ti-5553). 0.2% Yield strength (YS) has been correlated to various microstructural features and associated heat treatment parameters. Relative importance of microstructural features in influencing YS has been identified. Process parameters at different steps have been identified and recommended for attaining different levels of YS for this near beta Ti alloy. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors-phase consistency as well as amplitude covariation across trials-but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over-or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.
Resumo:
A new NMR experiment that exploits the advantages of proton double quantum (DQ) NMR through a proton DQ-carbon single quantum (SQ) correlation experiment in the solid state is proposed. Analogous to the previously proposed 2D H-1 (DQ)-C-13 refocused INEPT experiment (Webber et al., 2010), the correlation between H-1 and C-13 is achieved through scalar coupling evolution, while the double quantum coherence among protons is generated through dipolar couplings. However, the new experiment relies on C-13 transverse coherence for scalar transfer. The new experiment dubbed MAS-J-H-1 (DQ)-C-13-HMQC, is particularly suited for unlabeled molecules and can provide higher sensitivity than its INEPT counterpart. The experiment is applied to four different samples. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We develop an optical system for generating multiple light sheets. This is enabled by employing a special class of spatial filters in a cylindrical lens geometry. The proposed binary filter placed at the back aperture of the cylindrical lens results in the generation of a periodic transverse pattern extending along the z axis (i.e., multiple light sheets). Experimental results confirm the generation of multiple light sheets of thickness 6.6 mu m with an intersheet spacing of 13.4 mu m. The proposed imaging technique may facilitate three-dimensional imaging in nano-optics, fluorescence microscopy, and nanobiology. (C) 2014 Optical Society of America
Resumo:
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.
Resumo:
The retention of the desired combination of mechanical/tribological properties in ultrafine grained materials presents important challenges in the field of bulk metallic composites. In order to address this aspect, the present work demonstrates how one can achieve a good combination of hardness and wear resistance in Cu-Pb-TiB2 composites, consolidated by spark plasma sintering at low temperatures ( < 500 degrees C). Transmission electron microscope (TEM) studies reveal ultrafine grains of Cu (100-400 nm) with coarser TiB2 particles (1-2 mu m) along with fine scale Pb dispersoid at triple junctions or at the grain boundaries of Cu. Importantly, a high hardness of around 2.2 GPa and relative density of close to 90% relative density (rho(theo)) have been achieved for Cu-15 wt% TiB2-10 wt% Pb composite. Such property theo, combination has never been reported for any Cu-based nanocomposite, by conventional processing route. In reference to the tribological performance, fretting wear tests were conducted on the sintered nanocomposites and a good combination of steady state COF (0.6-0.7) and wear rate (10-4 mm(3)/N m) were measured. An inverse relationship between wear rate and hardness was recorded and this commensurates well with Archard's relationship of abrasive wear. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris, (Cu, Fe, Ti)(x)O-y as confirmed from subsurface imaging using focused ion beam microscopy has been identified as the key factors for the low wear rate of these composites. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this work, we address the recovery of block sparse vectors with intra-block correlation, i.e., the recovery of vectors in which the correlated nonzero entries are constrained to lie in a few clusters, from noisy underdetermined linear measurements. Among Bayesian sparse recovery techniques, the cluster Sparse Bayesian Learning (SBL) is an efficient tool for block-sparse vector recovery, with intra-block correlation. However, this technique uses a heuristic method to estimate the intra-block correlation. In this paper, we propose the Nested SBL (NSBL) algorithm, which we derive using a novel Bayesian formulation that facilitates the use of the monotonically convergent nested Expectation Maximization (EM) and a Kalman filtering based learning framework. Unlike the cluster-SBL algorithm, this formulation leads to closed-form EMupdates for estimating the correlation coefficient. We demonstrate the efficacy of the proposed NSBL algorithm using Monte Carlo simulations.
Resumo:
Materials with widely varying molecular topologies and exhibiting liquid crystalline properties have attracted considerable attention in recent years. C-13 NMR spectroscopy is a convenient method for studying such novel systems. In this approach the assignment of the spectrum is the first step which is a non-trivial problem. Towards this end, we propose here a method that enables the carbon skeleton of the different sub-units of the molecule to be traced unambiguously. The proposed method uses a heteronuclear correlation experiment to detect pairs of nearby carbons with attached protons in the liquid crystalline core through correlation of the carbon chemical shifts to the double-quantum coherences of protons generated through the dipolar coupling between them. Supplemented by experiments that identify non-protonated carbons, the method leads to a complete assignment of the spectrum. We initially apply this method for assigning the C-13 spectrum of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl oriented in the magnetic field. We then utilize the method to assign the aromatic carbon signals of a thiophene based liquid crystal thereby enabling the local order-parameters of the molecule to be estimated and the mutual orientation of the different sub-units to be obtained.
Resumo:
We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.