958 resultados para SLOW-TRANSIT CONSTIPATION
Resumo:
To histomorphometrically investigate the repair of critical size defects (CSDs) and bone augmentation in cranial walls using block of sintered bovine-derived anorganic bone (sBDAB) graft. Forty guinea-pigs were divided into test (n=20) and CSD control (n=20) groups. In each animal, a full-thickness bone defect with 9.5 mm diameter was made in the frontal bone. The defects were filled with an sBDAB block soaked in blood in the test group and with blood clot in the CSD control group. The skulls were collected at 0 h (n=2) and 30, 90 and 180 days (n=6/group and period) postoperatively. The volume density and total volume of newly formed bone, sBDAB, blood vessels and connective tissue, vertical thickness of removed bone plug, sBDAB block and graft area were evaluated. The vertical thickness of the adapted sBDAB block was 3.8 times higher than that of the removed bone plug and did not show significant difference between periods, filling in average 29.8% of the total graft region. The sBDAB block exhibited complete osseointegration with the borders of the defect at 90 days. At 90 and 180 days, the vertical thickness of the graft was 279% in the average, and the total volume of bone augmentation was, respectively, 78.8% and 148.5% higher compared with the removed bone plug. The defects of the CDS control group showed limited osteogenesis and filling by connective tissue plus tegument. The sBDAB block can be used to promote repair of CSDs and bone augmentation in the craniomaxillofacial region, due to its good osteoconductive and slow resorptive properties. To cite this article:Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R. Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model.Clin. Oral Impl. Res. 20, 2009; 340-350.doi: 10.1111/j.1600-0501.2008.01659.x.
Resumo:
Environmental conditions play a significant role in the economic success of aquaculture. This article classifies environmental factors in a way that facilitates economic analysis of their implications for the selection of aquaculture species and systems. The implication of on-farm as on-site environmental conditions for this selection are considered first using profit-possibility frontiers and taking into account the biological law of environmental tolerance. However, in selecting, recommending and developing aquaculture species and systems, it is often unrealistic to assume the degree of managerial efficiency implied by the profit-possibility function. It is appropriate to take account of the degree of managerial inefficiency that actually exists, not all of which may be capable of being eliminated. Furthermore, experimental R&D should be geared to on-farm conditions, and the variability of these conditions needs to be taken into account. Particularly in shared water bodies, environmental spillovers between aquaculturalists can be important and as shown theoretically, can influence the socially optimal selection of aquaculture species and systems. Similarly, aquaculture can have environmental consequences for the rest of the community. The social economic implications of this for the selection of aquaculture species and systems are analyzed. Some paradoxical results are obtained. For example, if the quality of social governance of aquaculture is poor, aquaculture species and systems that cause a slow rate of environmental deterioration may be socially less satisfactory than those that cause a rapid rate of such deterioration. Socially optimal choice of aquaculture species and systems depends not only on their biophysical characteristics and market conditions but also on the prevailing state of governance of aquaculture. Failure to consider the last aspect can result in the introduction of new aquaculture species (and systems) doing more social harm than good.
Resumo:
Central giant cell granuloma (CGCG) is a benign lesion with unpredictable biological behaviour ranging from a slow-growing asymptomatic swelling to an aggressive lesion associated with pain, bone and root resorption and also tooth displacement. The aetiology of the disease is unclear with controversies in the literature on whether it is mainly of reactional, inflammatory, infectious, neoplasic or genetic origin. To test the hypothesis that mutations in the SH3BP2 gene, as the principal cause of cherubism, are also responsible for, or at least associated with, giant cell lesions, 30 patients with CGCG were recruited for this study and subjected to analysis of germ line and/or somatic alterations. In the blood samples of nine patients, one codon alteration in exon 4 was found, but this alteration did not lead to changes at the amino acid level. In conclusion, if a primary genetic defect is the cause for CGCG it is either located in SH3BP2 gene exons not yet related to cherubism or in a different gene.
Resumo:
Background: Dental erosion manifests as cupped lesions on cusp apices and in fissures of teeth in patients from southeast Queensland referred with excessive tooth wear When found in young adults, these lesions may indicate early onset of active dental erosion. If the numbers and extent of cupped lesions increase with age, erosion may be a slow cumulative process. Methods: This cross-sectional study recorded the presence or absence and the relative sizes of cupped lesions from all cusps and occlusal fissures on premolar and permanent molar teeth from study models by image analysis. Type-specimens of cupped lesions were examined. Results: The Incidence by tooth reflected time in the mouth, post-tooth emergence. A linear increase in lesion number and size, with age, was found. However, cupped lesions occurred on mandibular first molar cusp apices as often, and attained greater extent, in adults under 27 years compared with older subjects. Conclusion: Marked differences were found between lesion number and size, between maxillary and mandibular molar sites that reflect differences in salivary protection against dental erosion. The significance of this study is that the mandibular first permanent molar indicates the age of onset and severity of dental erosion.
Resumo:
The progressive degradation of resin-dentin bonds is due, in part, to the slow degradation of collagen fibrils in the hybrid layer by endogenous matrix metalloproteinases (MMPs) of the dentin matrix. In in vitro durability studies, the storage medium composition might be important because the optimum activity of MMPs requires both zinc and calcium. Objective. This study evaluated the effect of different storage media on changes in matrix stiffness, loss of dry weight or solubilization of collagen from demineralized dentin beams incubated in vitro for up to 60 days. Methods. Dentin beams (1 mm x 2 mm x 6 mm) were completely demineralized in 10% phosphoric acid. After baseline measurements of dry mass and elastic modulus (E) (3-point bending, 15% strain) the beams were divided into 5 groups (n = 11/group) and incubated at 37 degrees C in either media containing both zinc and calcium designated as complete medium (CM), calcium-free medium, zinc-free medium, a doubled-zinc medium or water. Beams were retested at 3, 7, 14, 30, and 60 days of incubation. The incubation media was hydrolyzed with HCl for the quantitation of hydroxyproline (HOP) as an index of solubilization of collagen by MMPs. Data were analyzed using repeated measures of ANOVA. Results. Both the storage medium and the storage time showed significant effects on E, mass loss and HOP release (p < 0.05). The incubation in CM resulted in relatively rapid and significant (p < 0.05) decreases in stiffness, and increasing amounts of mass loss. The HOP content of the experimental media also increased with incubation time but was significantly lower (p < 0.05) than in the control CM medium, the recommended storage medium. Conclusions. The storage solutions used to age resin-dentin bonds should be buffered solutions that contain both calcium and zinc. The common use of water as an aging medium may underestimate the hydrolytic activity of endogenous dentin MMPs. (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ameloblastoma is a benign locally aggressive infiltrative odontogenic lesion. It is characterized by slow growth and painless swelling. The treatment for ameloblastoma varies from curettage to en bloc resection, and the reported recurrence rates after treatment are high; the safety margin of resection is important to avoid recurrence. Advances in technology brought about great benefits in dentistry; a new generation of computed tomography scanners and 3-dimensional images enhance the surgical planning and management of maxillofacial tumors. The development of new prototyping systems provides accurate 3D biomodels on which surgery can be simulated, especially in cases of ameloblastoma, in which the safety margin is important for treatment success. A case of mandibular follicular ameloblastoma is reported where a 3D biomodel was used before and during surgery.
Resumo:
This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
Isolated limb infusion (ILI) is an attractive, less complex alternative to Isolated limb perfusion (ILP). It has a lower morbidity in treating localized recurrences and in transit metastases of the limb for tumours such as melanoma, Merkel cell tumour and Kaposi's sarcoma, allowing administration of high concentrations of cytotoxic agent to the affected limb under hypoxic conditions. Melphalan is the preferred cytotoxic agent for the treatment of melanoma by ILP or ILI. We report pharmacokinetic data from 12 patients treated by ILI for tumours of the limb in Brisbane. The kinetics of drug distribution in the limb was calculated using a two-compartment vascular model, where both tissue and infusate act as well-stirred compartments. Analysis of melphalan concentrations in the perfusate during ILI showed good agreement between the values measured and the concentrations predicted by the model. Recirculation and wash-out flow rates, tissue concentrations and the permeability surface area product (PS) were calculated. Correlations between the PS value and the drug concentrations In the perfusate and tissue were supported by the results. These data contribute to a better understanding of the distribution of melphalan during ILI in the limb, and offer the opportunity to optimize the drug regimen for patients undergoing ILI. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
The goal of the current study was to identify discrete longitudinal patterns of change in adolescent smoking using latent growth mixture modeling. Five distinct longitudinal patterns were identified. A group of early rapid escalators was characterized by early escalation (at age 13) that rapidly increased to heavy smoking. A pattern characterized by occasional puffing up until age 15, at which time smoking escalated to moderate levels was also identified (late moderate escalators). Another group included adolescents who, after age 15, began to escalate slowly in their smoking to light (0.5 cigarettes per month) levels (late slow escalators). Finally, a group of stable light smokers (those who smoked 1-2 cigarettes per month) and a group of stable puffers (those. who smoked only a few puffs per month) were also identified. The stable puffer group was the largest group and represented 25% of smokers.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
In studying the penetration of water-soluble surfactants into water-insoluble monolayers the main theoretical problem is to find a relationship that would enable the amount of surfactant that has entered the monolayer to be calculated from a set of equilibrium surface pressure-area isotherms. Despite many attempts, no current theory gives satisfactory results when applied to experimental data (Langmuir 14 (1998) 2148). One possible reason is that equilibrium had not been established when the surface pressure-area curves were measured. The three experiments reported here suggest that equilibrium is extremely difficult to establish in such systems when the area is low or the surface pressure is high. The essence of these experiments is to try to reach the same final condition by two different routes. In the first route, the one nearly always used in equilibrium penetration measurements, the surfactant is injected under the expanded monolayer, which is then slowly compressed in steps, with time allowed at each step for a steady surface pressure to be attained. In the second procedure, the monolayer is first compressed to a high surface pressure and the surfactant then injected. A stepped expansion isotherm may then be observed. Surface pressure-area per monolayer molecule isotherms, reflection spectra, and slow neutron reflectivity data all show the same pattern: if the surfactant was allowed to penetrate while the monolayer was in an expanded state, it was not completely removed when the monolayer was compressed; but if the monolayer was in a highly compressed state when exposed to the surfactant little penetration took place until the film was expanded. There thus appear to be very large energy barriers to the ejection of surfactant from a compressed monolayer and to the penetration of surfactant into a compressed monolayer. Although these experiments have some limitations, it now seems likely that at least some of the penetration data used in evaluating the various thermodynamic treatments of equilibrium penetration were not equilibrium data. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
OBJECTIVES: The authors prospectively examined the association between bowel movement frequency (used as a proxy for intestinal transit), laxative use, and the risk of symptomatic gallstone disease. METHODS: A total of 79,829 women, aged 36–61 yr, without a history of symptomatic gallstone disease and free of cancer, responded to a mailed questionnaire in 1982 that assessed bowel movement frequency and use of laxatives. Between 1984 and 1996, 4,443 incident cases of symptomatic gallstone disease were documented. Relative risks (RRs) of symptomatic gallstone disease and 95% confidence intervals (CIs) were calculated using logistic regression. RESULTS: After controlling for age and established risk factors, the multivariate RRs were, compared to women with daily bowel movements, 0.97 (95% CI 0.86–1.08) for women with bowel movements every third day or less, and 1.00 (95% CI 0.91–1.11) for women with bowel movement more than once daily. No trend was evident. As compared to women who never used laxatives in 1982, a significant modest inverse association was seen for monthly laxative use, with a multivariate RR of 0.84 (95% CI 0.72–0.98), and weekly to daily laxative use was associated with a RR of 0.88 (95% CI 0.78–1.02). CONCLUSIONS: These findings do not support an association between infrequent bowel movements and risk of symptomatic gallstone disease in women, and indicate that simple questions directed at bowel movement frequency are unlikely to enhance our ability to predict risk of symptomatic gallstone disease. The slightly inverse association between use of laxatives and risk of symptomatic gallstone disease may be due to a mechanism that is not related to bowel movement frequency.
Resumo:
Numerous everyday tasks require the nervous system to program a prehensile movement towards a target object positioned in a cluttered environment. Adult humans are extremely proficient in avoiding contact with any non-target objects (obstacles) whilst carrying out such movements. A number of recent studies have highlighted the importance of considering the control of reach-to-grasp (prehension) movements in the presence of such obstacles. The current study was constructed with the aim of beginning the task of studying the relative impact on prehension as the position of obstacles is varied within the workspace. The experimental design ensured that the obstacles were positioned within the workspace in locations where they did not interfere physically with the path taken by the hand when no obstacle was present. In all positions, the presence of an obstacle caused the hand to slow down and the maximum grip aperture to decrease. Nonetheless, the effect of the obstacle varied according to its position within the workspace. In the situation where an obstacle was located a small distance to the right of a target object, the obstacle showed a large effect on maximum grip aperture but a relatively small effect on movement time. In contrast, an object positioned in front and to the right of a target object had a large effect on movement speed but a relatively small effect on maximum grip aperture. It was found that the presence of two obstacles caused the system to decrease further the movement speed and maximum grip aperture. The position of the two obstacles dictated the extent to which their presence affected the movement parameters. These results show that the antic ipated likelihood of a collision with potential obstacles affects the planning of movement duration and maximum grip aperture in prehension.