995 resultados para SIRGAS2000 Datum
Resumo:
Changes in Atlantic deep water circulation were reconstructed by comparing the benthic foraminiferal delta13C record at ODP Site 1090 in the South Atlantic with similar records from the North Atlantic (Sites 982, 607, 925, 929) and deep Pacific (Site 849) oceans. Important deep water circulation changes occurred in the early Pleistocene at 1.55 Myr and during the Mid-Pleistocene Transition at 0.9 Myr. At 1.55 Myr, glacial delta13C values in the Southern Ocean became significantly lower than those in the deep Pacific, establishing a pattern that persisted throughout the late Pleistocene. We propose that the lowering of delta13C values of Southern Component Water (SCW) at this time resulted from expansion of sea ice and reduced ventilation of deep water during glacial periods after marine isotope stage 52. Accompanying this change in Southern Ocean deep water circulation was enhanced interhemispheric coupling between the North and South Atlantic after 1.55 Myr. At ~0.9 Myr, the magnitude of glacial-to-interglacial variabilityin delta13C increased and shifted to a longer frequency (100 kyr) along with oceanic delta18O (ice volume). Calculation of percent Northern Component Water (NCW) using Site 1090 as the SCW end member yielded 20-30% less reduction of NCW during glacial periods of the late Pleistocene. Also, a trend toward reduced glacial suppression of NCW during the past 400 kyr is not evident. The apparent decoupling of ice volume and deep water circulation reported previously maybe an artifact of using a Pacific, rather than a Southern Ocean, carbon isotopic record to calculate past mixing ratios of NCW and SCW.
Resumo:
Broken Ridge, in the eastern Indian Ocean, is a shallow-water volcanic platform which formed during the Early to middle Cretaceous at which time it comprised the northern portion of the Kerguelen-Heard Plateau. Rifting during the middle Eocene and subsequent seafloor spreading has moved Broken Ridge about 20?N to its present location. The sedimentary section of Broken Ridge includes Turonian-lower Eocene limestone and chalk with volcanic ash, an interval of detrital sands and gravels associated with middle Eocene rifting and uplift, and a middle-late Oligocene unconformity overlain by a thin section of Neogene-Holocene pelagic calcareous ooze. This paper summarizes the available post-cruise biostratigraphic and magnetostratigraphic data for the Cretaceous-Paleogene section on Broken Ridge. The synthesis of this information permits a more precise interpretation of the timing of events in the history of Broken Ridge, in particular the timing and duration of the middle Eocene rifting event. Paleontologic data support rapid flexural uplift of Broken Ridge in response to mechanical rather than thermal forces. Other highlights of the section include a complete Cretaceous/Tertiary boundary and an opportunity for first-order correlation of Paleogene diatom stratigraphy with that of the calcareous groups.
Resumo:
Benthic foraminiferal stable isotope records for the past 11 Myr from a recently drilled site in the sub-Antarctic South Atlantic (Site 1088, Ocean Drilling Program Leg 177, 41°S, 15°E, 2082 m water depth) provide, for the first time, a continuous long-term perspective on deep water distribution patterns and Southern Ocean climate change from the late Miocene through the early Pliocene. I have compiled published late Miocene through Pliocene stable isotope records to place the new South Atlantic record in a global framework. Carbon isotope gradients between the North Atlantic, South Atlantic, and Pacific indicate that a nutrient-depleted watermass, probably of North Atlantic origin, reached the sub-Antarctic South Atlantic after 6.6 Ma. By 6.0 Ma the relative proportion of the northern-provenance watermass was similar to today and by the early Pliocene it had increased to greater than the modern proportion suggesting that thermohaline overturn in the Atlantic was relatively strong prior to the early Pliocene interval of inferred climatic warmth. Site 1088 oxygen isotope values display a two-step increase between ~7.4 Ma and 6.9 Ma, a trend that parallels a published delta18O record of a site on the Atlantic coast of Morocco. This is perhaps best explained by a gradual cooling of watermasses that were sinking in the Southern Ocean. I speculate that relatively strong thermohaline overturn at rates comparable to the present day interglacial interval during the latest Miocene may have provided the initial conditions for early Pliocene climatic warmth. The impact of an emerging Central American Seaway on Atlantic-Pacific Ocean upper water exchange may have been felt in the North Atlantic beginning in the latest Miocene between 6.6 and 6.0 Ma, which would be ~1.5 Myr earlier than previously thought.
Resumo:
Drilling in the Caribbean Sea during Ocean Drilling Program Leg 165 has recovered a large number of silicic tephra layers and led to the discovery of three major episodes of explosive volcanism that occurred during the last 55 m.y. on the margins of this evolving ocean basin. The earliest episode is marked by Paleocene to early Eocene explosive volcanism on the Cayman Rise, associated with activity of the Cayman arc, an island arc that was the westward extension of the Sierra Maestra volcanic arc in southern Cuba. Caribbean sediments also document a major mid- to late Eocene explosive volcanic episode that is attributed to ignimbrite-forming eruptions on the Chortis Block in Central America to the west. This event is contemporaneous with the first phase of activity of the Sierra Madre volcanic episode in Mexico, the largest ignimbrite province on Earth. In the Caribbean sediments, a Miocene episode of explosive volcanism is comparable to the Eocene event, and also attributed to sources in the Central American arc to the west. Radiometric 40Ar/39Ar dates have been obtained for biotites and sanidines from 27 tephra layers, providing absolute ages for the volcanic episodes and further constraining the geochronology of Caribbean sediments. Volcanic activity of the Cayman arc is attributed to the northward subduction of the leading edge of the oceanic plate that carried the Caribbean oceanic plateau. Although the factors generating the large episodes of Central American explosive volcanism are unclear, we propose that they are related to contemporary major readjustments of plate tectonic configuration in the Pacific.
Resumo:
The late Paleocene thermal maximum (LPTM) was a dramatic, short-term global warming event that occurred ~55 Ma. Warming of high-latitude surface waters and global deep waters during the LPTM has been well documented; however, current data suggest that subtropical and tropical sea surface temperatures (SSTs) did not change during the event. Conventional paradigms of global climate change, such as CO2-induced greenhouse warming, predict greater warming in the high latitudes than in the tropics or subtropics but, nonetheless, cannot account for the stable tropical/subtropical SSTs. We measured the stable isotope values of well-preserved late Paleocene to early Eocene planktonic foraminifera from South Atlantic Deep Sea Drilling Project (DSDP) Site 527 to evaluate the subtropical response to the climatic and environmental changes of the LPTM. Planktonic foraminiferal d18O values at Site 527 decrease by ~0.94 per mil from pre-LPTM to excursion values, providing the first evidence for subtropical warming during the LPTM. We estimate that subtropical South Atlantic SSTs warmed by at least ~1°-4°C, on the basis of possible changes in evaporation and precipitation. The new evidence for subtropical SST warming supports a greenhouse mechanism for global warming involving elevated atmospheric CO2 levels.
Resumo:
Ocean Drilling Program Site 1002 in the Cariaco Basin was drilled in the final two days of Leg 165 with only a short transit remaining to the final port of San Juan, Puerto Rico. Because of severe time constraints, cores from only the first of the three long replicate holes (Hole 1002C) were opened at sea for visual description, and the shipboard sampling was restricted to the biostratigraphic examination of core catchers. The limited sampling and general scarcity of biostratigraphic datums within the late Quaternary interval covered by this greatly expanded hemipelagic sequence resulted in a very poorly defined age model for Site 1002 as reported in the Leg 165 Initial Reports volume of the Proceedings of the Ocean Drilling Program. Here, we present for the first time a new integrated stratigraphy for Site 1002 based on the standard of late Quaternary oxygen-isotope variations linked to a suite of refined biostratigraphic datums. These new data show that the sediment sequence recovered by Leg 165 in the Cariaco Basin is continuous and spans the time interval from 0 to ~580 ka, with a basal age roughly twice as old as initially suspected from the tentative shipboard identification of a single biostratigraphic datum. Lithologic subunits recognized at Site 1002 are here tied into this new stratigraphic framework, and temporal variations in major sediment components are reported. The biogenic carbonate, opal, and organic carbon contents of sediments in the Cariaco Basin tend to be high during interglacials, whereas the terrigenous contents of the sediments increase during glacials. Glacioeustatic variations in sea level are likely to exert a dominant control on these first-order variations in lithology, with glacial surface productivity and the nutrient content of waters in the Cariaco Basin affected by shoaling glacial sill depths, and glacial terrigenous inputs affected by narrowing of the inner shelf and increased proximity of direct riverine sources during sea-level lowstands.
Resumo:
Large changes in benthic foraminiferal delta180 and delta13C occurred during the Pliocene (between 3.0 and 2.0 Ma) at Hole 665A. Oxygen isotopic compositions increased to maximum values at 2.4 Ma, correlating with an 18O enrichment observed at Hole 552A and other locations (Shackleton et al., 1984). As at Hole 606 (Keigwin, 1986), however, maximum delta180 values at 2.4 Ma were not as great as at Hole 552A, and enrichments in delta180 also occurred before 2.4 Ma. We believe that the section representing sediments from 2.5 to 2.7 or 2.8 Ma is missing at Hole 552A because of incomplete core recovery. Consequently, the older delta180 increases are not found at Hole 552A. Benthic foraminiferal delta13C values are much lower at Hole 665A than at Hole 552A, approaching the low values observed in the Pliocene Pacific Ocean. This geographic distribution of delta13C suggests that, like late Quaternary glaciations, the equatorial Atlantic Ocean was dominated during the Pliocene by deep water that originated in the Southern Ocean and had chemical characteristics very similar to the Pacific Ocean. Reduced O2 values were probably associated with low delta13C values and contributed to increased preservation of organic carbon during enriched 180 intervals of the Pliocene equatorial Atlantic.
Resumo:
In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.
Resumo:
Quantitative analyses of selected calcareous nannofossils in deep-sea sections recovered from the paleo-equatorial Pacific (ODP Leg 199) provide new information about biostratigraphy, biochronology and the evolutionary history of calcareous nannofossils across the Paleocene/Eocene transition interval. The sediment cores from ODP Leg 199 represent the first continuous Paleocene/Eocene boundary sections ever to be sampled in the central equatorial Pacific Ocean. Calcareous nannofossil assemblages are studied to document the distribution of biostratigraphically useful taxa such as Ericsonia, Discoaster, Fasciculithus, Rhomboaster and Tribrachiatus. Focus is given to the evolution of the Rhomboaster-Tribrachiatus lineage in the lower Eocene interval at Site 1215, and on the stratigraphic relationship of these taxa relative to species in the genus Fasciculithus. Critical intervals of North Atlantic DSDP Site 550 have also been re-examined. The Tribrachiatus digitalis morphotype was described at Site 550 from an interval affected by down-hole contamination, partly originating from within the Tribrachiatus orthostylus range. The T. digitalis morphotype represents an evolutionary transitional form between T. contortus and T. orthostylus, entering the stratigraphic record within the range of the former species and disappearing within the lower part of the range of the latter species. The subzonal subdivision of Zone NP10 hence collapses. Lithological and colour variability reflecting orbital cyclicity occur in the lower Eocene of Site 1215, permitting a relative astronomical age calibration of the Tribrachiatus taxa. The distinct Rhomboaster spp.-Discoaster araneus association also occurs in the paleo-equatorial Pacific Ocean, together with a marked decrease in diversity of Fasciculithus spp. Site 1220 reveals a short peak abundance of Thoracosphaera spp. just above the P/E boundary interval, which probably reflects a stressed surface water environment.
Resumo:
Sediments recovered during Leg 90 (Sites 587-594, plus Site 586 cored during Leg 89) are, in general, extremely weakly magnetized carbonate oozes and chalks with NRM intensities seldom greater than 0.05 µG. The quality of the paleomagnetic records deteriorates with increasing depth caused by the combined effects of removal of primary magnetic oxides by sulfate reduction processes and the dispersal of magnetic grains during compaction. Magnetic reversal sequences are generally recognizable back to the Gilbert, 3.4 to 5.35 m.y., except at equatorial Site 586 where only the Brunhes/Matuyama boundary could be identified. Longer reversal records were obtained at Site 588 (to Chron 13, about 13 m.y.) and Site 594 (base of Chron 5, about 5.9 m.y.). Sediments are characterized by extremely high calcium carbonate contents (90-100%) with almost no biosiliceous components. Blebs and streaks of pyrite are common, and the presence of iron sulfides with poor magnetic stabilities is suspected, although not yet positively identified. Viscous components of magnetization are common, sometimes to the extent of dominating the primary remanence, and there is evidence to suggest that a magnetic remanence is imparted during core recovery. Siliceous carbonate oozes provide better paleomagnetic records than pure carbonate oozes.
Resumo:
An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.
Resumo:
This dataset presents Differential Global Positioning System data (DGPS) acquired within the Bossons glacier proglacial area. Bossons glacier is a rapidly retreating glacier and its proglacial area is deglaciated for ~30 years. Bossons stream is one of the outlets of the subglacial drainage system. It starts as a 800 m steep cascade reach, then flows through an area with gentler slope : the Plan des Eaux (PdE). PdE is a 300 m long, 50 m wide proglacial alluvial plain with an increasing channel mobility in the downstream direction but decreasing slope gradient and incision. As it may act a sediment trap, studying periglacial and proglacial erosion processes in the Bossons catchment requires to quantify PdE sediment volume evolution. A several meter-sized block located within Bossons proglacial area was set up as GPS base : its location was measured by one antenna (Topcon Hyper Pro) by performing 600 consecutive measurements throughout one day. A second antenna (Topcon Hyper Pro) was then used to measure XYZ location of points in the proglacial area with a ~2 m grid. Radio communication between the two antennas allowed differential calculations to be automatically carried out on field using the Topcon FC-250 hand controller. This methodology yields 3 cm XY and 1.5 cm Z uncertainties. DGPS data have been acquired through 10 campaigns from 2004 to 2014; campaigns from 2004 to 2008 cover a smaller area than those from 2010 to 2014. Digital Elevation Model (DEM) have been interpolated from DGPS data and difference between two DEMs yields deposited and eroded volume within PdE. Maps of PdE volume variation between two campaigns show that incision mainly occurs in the upper and lower sections where as deposition dominates in the middle section. Deposition, denudation and net rate (deposition rate - denudation rate) are calculated by normalizing volumes by DEM areas. Deposition dominates results with a mean net rate of 29 mm/yr. However, strong inter-annual variability exists and some years are dominated by denudation : -36 mm/yr and -100 mm/yr for 2006 and 2011, respectively. Nonetheless, oldest campaigns (2004 to 2008) were carried out on the lower part part of the alluvial plain and ruling them out to keep only complete DEM (2010 to 2014) yields a mean net rate of ~15 mm/yr. This results is coherent with field observations of both strong deposition (e.g. flood deposits) and strong erosion (e.g. 30 cm incision) evidences. Bossons glacier proglacial area is thus dynamic with year-to-year geormorphological changes but may leans toward increasing its mean elevation through a deposition dominated system.
Resumo:
Micropaleontologists have traditionally recognized the mid-Miocene Fohsella lineage as a flagship for phyletic gradualism within the planktic foraminifera. However, study of a deep-sea record from the western equatorial Pacific (ODP Site 806) reveals that coiling ratios within this clade suddenly (<5 kyr) shift after a prolonged, ancestral state of near randomness (~50%) to a transient phase (13.42-13.43 Ma) of dextral dominance (~75%) immediately following the first common occurrence of keeled fohsellids. This brief period of dextral dominance was abruptly (<5 kyr) succeeded by an irreversible change to sinistral dominance (~96%). Fohsellid abundances decline markedly through the interval in which the sinistral preference is established. The shift to sinistrality (13.42 Ma) predated the deepening of fohsellid depth ecology by ~240-488 kyr, indicating that these two events were unrelated. This view is supported by a lack of delta 18O evidence for depth-habitat differences between the two chiral forms, which refutes the notion that sinistral fohsellids were "pre-adapted" for ensuing hydrographic change because they occupied a deeper depth habitat than their dextral counterparts. Planktic foraminiferal assemblages become strongly oligotrophic in character through the interval in which the fohsellid delta 18O increase is recorded, indicating that the migration to deeper depths was fostered by an expansion of the mixed layer in the western equatorial Pacific. Salient aspects of this brief, but conspicuous faunal change are a marked increase in the abundance of symbiont-bearing globigerinoidids, a concomitant collapse of local Jenkinsella mayeri/siakensis populations, and reduced fohsellid abundances. The rapid and permanent nature of the Fohsella sinistral shift provides a distinct, unequivocal datum that may prove useful for correlating mid-Miocene sections throughout the Caribbean Sea and tropical regions in the western sectors of the Pacific and Atlantic. The coiling ratio changes that occurred during the evolution of the Fohsella chronocline probably reflect changing population dynamics between cryptic genotypes with different coiling preferences.