971 resultados para SINGLE-MOLECULE MAGNETS
Resumo:
We present an interactive map-based technique for designing single-input-single-output compliant mechanisms that meet the requirements of practical applications. Our map juxtaposes user-specifications with the attributes of real compliant mechanisms stored in a database so that not only the practical feasibility of the specifications can be discerned quickly but also modifications can be done interactively to the existing compliant mechanisms. The practical utility of the method presented here exceeds that of shape and size optimizations because it accounts for manufacturing considerations, stress limits, and material selection. The premise for the method is the spring-leverage (SL) model, which characterizes the kinematic and elastostatic behavior of compliant mechanisms with only three SL constants. The user-specifications are met interactively using the beam-based 2D models of compliant mechanisms by changing their attributes such as: (i) overall size in two planar orthogonal directions, separately and together, (ii) uniform resizing of the in-plane widths of all the beam elements, (iii) uniform resizing of the out-of-plane thick-nesses of the beam elements, and (iv) the material. We present a design software program with a graphical user interface for interactive design. A case-study that describes the design procedure in detail is also presented while additional case-studies are posted on a website. DOI:10.1115/1.4001877].
Resumo:
The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.
Resumo:
We present here the detailed results of X-ray diffraction from single quasicrystals of Al6CuLi3. X-ray precession photographs taken down the two-, three- and five-fold axes along with rotation and zero-level Weissenberg photographs are shown. Preliminary analysis of the diffraction data rules out the twin hypothesis.
Resumo:
Ionic conductivity measurements have been made on pure, copper-doped and cadmium-doped single crystals. Dielectric measurements in the frequency range 30Hz–100Hz showed that there was no anomalously to be (0.64 ± 0.02) eV and migration energies for silver ion intersitials and vacancies in the c direction to be (0.41 ± 0.02) eV and (0.50 ± 0.02) eV respectively. ESR measurements have shown that copper exists as Cu+ in these crystals. Dielectric measurements in the frequency range (OHz–100KHz showed that there was no anomalously high value for ε as reported earlier.
Resumo:
A detailed study, involving the synthesis of a single-source precursor containing two metal ions sharing the same crystallographic site, has been undertaken to elucidate the use of such a single-source precursor in a CVD process for growing thin films of oxides comprising these two metals, ensuring a uniform composition and distribution of metal ions. The substituted complexes Cr1-xAlx(acac)(3), where acac = acetyl-acetonate, have been prepared by a co-synthesis method, and characterized using UV-Vis spectroscopy. TGA/DTA measurements, and single crystal X-ray diffraction at low temperature. All the studied compositions crystallize in the monoclinic space group P2(1)/c with Z = 4 in the unit cell. It was observed that the ratio (Al:Cr) of the site occupancy for the metal ions, obtained from single crystal refinement, is in agreement with the results obtained from complexometric titrations. All the solid state structures have the metal in an octahedral environment forming six-membered chelate rings. M-O acac bond lengths and disorder in the terminal carbon have been studied in detail for these substituted metal-organic complexes. One composition among these was chosen to evaluate their suitability as a single-source precursor in a LPMOCVD process (low-pressure metal-organic chemical vapour deposition) for the deposition of a substituted binary metal oxide thin film. The resulting thin films were characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The nanoindentation technique has been employed to relate the mechanical properties of saccharin single crystals with their internal structure. Indentations were performed on (100) and (011) faces to assess the mechanical anisotropy. The load-displacement (P-h) curves indicate significant differences in the nature of the plastic deformation on the two faces. The P-h curves obtained on the (011) plane are smooth, reflecting homogeneous plasticity. However, displacement bursts (pop-ins) are observed in the P-h curves obtained on the (100) plane suggesting a discrete deformation mechanism. Marginal differences exist in the hardness and modulus on the two faces that may, in part, be rationalized, although one notes that saccharin has a largely three-dimensional close-packed structure. The structural origins of the fundamentally different deformation mechanisms on (100) and (011) are discussed in terms of the dimensionality of the hydrogen bonding networks. Down the (100) planes, the saccharin dimers are stacked and are stabilized by nonspecific van der Wants interactions mostly between aromatic rings. However, down the (011) planes, the molecules are stabilized by more directional and cross-linked C-H ... O hydrogen bonds. This anisotropy in crystal packing and interactions is reflected in the mechanical behavior on these faces. The displacements associated with the pop-ins were found to he integral multiples oldie molecule separation distances. Nanoindentation offers an opportunity to compare experimentally, and in a quantitative way, the various intermolecular interactions that fire present in a molecular crystal.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
We have investigated the influence of Fe excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (T-c) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field H-c1, it is inferred that excess of Fe suppresses superconductivity. The linear and nonlinear responses of the ac susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity d(rho)/d(T) in the temperature range T-c < T < T-a with T-a being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above T-c in the sample with higher amount of Fe suggests a disorder-driven electronic localization.
Resumo:
Sym-homospermidine, [formula; see text] is a naturally occurring rare-polyamine found in relatively large concentration in sandal leaves. As part of our studies on structure and interactions of polyamines, ym-homospermidine was purified from sandal leaves and its structure was determined by single crystal X-ray diffraction technique. The phosphate salt of the molecule crystallized in the triclinic space group P1- with a = 8.246(1)A, b = 8.775(1)A, c = 15.531(2)A, alpha = 74.20(1) degrees, beta = 88.36(1) degrees and gamma = 65.41(1) degrees. The structure was determined by direct methods and refined to a final R factor of 5.4% for 2087 reflections with magnitude of F(obs) greater than 5 sigma [F(obs)]. The amine exists in its most favourable all trans conformation. For each amine molecule three phosphate groups exist in the crystal structure, suggesting that two of the oxygens of each phosphate group are protonated. There is also a single water molecule in the asymmetric unit in contrast to that of spermidine phosphate which has 3 water molecules. These differences probably reflect the hydrogen bonding properties of mono-ionic and di-ionic phosphate groups. The structure is predominantly stabilized by a network of hydrogen bonds.
Resumo:
The conformational properties of the protected seven-residue C-terminal fragment the lipopeptaibol antibiotic Trichogin A IV (Boc-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe) has been examined in CDCl3 and (CD3)2SO by 1H-nmr. Evidence for a multiple β-turn conformation [type I′ at Gly(1)-Gly(2), type II at Leu(3)-Aib(4), and a type I′ at Aib(4)-Gly(5)] suggests that Leu(3) has preferred an extended or semiextended conformation over a helical conformation in CDCl3. This structure is thus in contrast to earlier observations of seven-residue peptides containing a single central Aib preferring helical conformations in both solution and crystalline slates. A structural transition to a frayed right-handed helix is absented in (CD3)2SO. These results suggest that nonhelical conformations may be important in Gly-rich peptides containing Aib. Further, the presence of amino acids with contradictory influences on backbone conformational freedom can lead to well-defined conformational transitions even in small peptides
Measurement of the t-channel single top quark production cross section in pp collisions at √s =7 TeV
Resumo:
The cylindrical Langmuir probe under orbital-limited conditions was used to determine the charge density in a low-density collisional plasma. The Langmuir's theory was applied to both electron and ion saturation currents in their respective accelerating regions. Present study indicates that the length of the probe significantly affects the probe characteristics. A probe of suitable length under orbital-limited conditions may be useful under the experimental conditions where the radius of the probe is much smaller than the Debye lengt.
Resumo:
The recombination and the faradaic fluxes are shown to be sensitive to the location of a single level recombination center, when it is located near the band edges. As the surface level is shifted deeper into the band gap from either of the band edges, the back emission terms are dominated by electron capture and hole capture terms, and the occupancy of the surface level is no longer determined by its location in the band gap. However, when one of the back emission terms determines the surface state occupancy, it is shown that there exists a simple relation between the value of the surface level and the recombination and the faradaic fluxes respectively. Expressions to this effect are derived and verified in the case of the recombination flux, which characterized by the potential at which it attains its maximum value. For the faradaic flux the results are qualitative.