958 resultados para SILICON DRIFT DETECTOR (SDD)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Following vitrectomy for PVR-associated retinal detachment, placement of an encircling band, filling with silicone oil (SO) and successful retinal reattachment, a recurrence of PVR can develop. Retinal redetachment after SO removal is usually due to secondary or residual PVR. We wanted to ascertain whether the anatomical and functional outcomes of surgery in patients with a reattached retina and recurrent PVR can be improved by delaying the removal of SO. PATIENTS AND METHODS: 112 consecutive patients with PVR-associated retinal detachment who had undergone vitrectomy with SO filling, were monitored for at least 6 months after SO removal. Prior to SO removal, the retina posterior to the encircling band had to be completely reattached. Patients who developed PVR after SO filling were divided into two groups according to the duration of SO retention: 12 - 18 months (group 2: n = 48); > 18 months (group 3: n = 21). Individuals without PVR recurrence after SO filling and in whom the SO was consequently removed within 4 - 12 months served as control (group 1: n = 43). Anatomical success, intraocular pressure (IOP) and best-corrected visual acuity (BCVA) served as the primary clinical outcome parameters. RESULTS: Six months after SO removal, the anatomical success rates (86.3 %, 88.8 % and 84.6 %, in groups 1, 2 and 3, respectively; log rank = 0.794) and the BCVAs (p = 0.861) were comparable in the three groups. Mean IOP (p = 0.766), and the frequency of complications such as PVR recurrence (p = 0.936), bullous keratopathy (p = 0.981) and macular pucker (p = 0.943) were likewise similar. Patients in whom SO was retained for more than 18 months had the highest IOPs and required the heaviest dosage with anti-glaucoma drugs. CONCLUSIONS: In patients who develop a recurrence of PVR after vitrectomy and SO filling the surgeon can observe and treat retinal changes for up to 18 months without impairing the anatomical and functional outcomes. The retention of SO for more than 18 months does not improve the anatomical outcome. However, it can impair the functional outcome by precipitating the development of a persisting secondary glaucoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. STUDY DESIGN: Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. RESULTS: The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. CONCLUSIONS: The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The verification possibilities of dynamically collimated treatment beams with a scanning liquid ionization chamber electronic portal image device (SLIC-EPID) are investigated. The ion concentration in the liquid of a SLIC-EPID and therefore the read-out signal is determined by two parameters of a differential equation describing the creation and recombination of the ions. Due to the form of this equation, the portal image detector describes a nonlinear dynamic system with memory. In this work, the parameters of the differential equation were experimentally determined for the particular chamber in use and for an incident open 6 MV photon beam. The mathematical description of the ion concentration was then used to predict portal images of intensity-modulated photon beams produced by a dynamic delivery technique, the sliding window approach. Due to the nature of the differential equation, a mathematical condition for 'reliable leaf motion verification' in the sliding window technique can be formulated. It is shown that the time constants for both formation and decay of the equilibrium concentration in the chamber is in the order of seconds. In order to guarantee reliable leaf motion verification, these time constants impose a constraint on the rapidity of the image-read out for a given maximum leaf speed. For a leaf speed of 2 cm s(-1), a minimum image acquisition frequency of about 2 Hz is required. Current SLIC-EPID systems are usually too slow since they need about a second to acquire a portal image. However, if the condition is fulfilled, the memory property of the system can be used to reconstruct the leaf motion. It is shown that a simple edge detecting algorithm can be employed to determine the leaf positions. The method is also very robust against image noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To prospectively determine quantitatively and qualitatively the timing of maximal enhancement of the normal small-bowel wall by using contrast material-enhanced multi-detector row computed tomography (CT). MATERIALS AND METHODS: This HIPAA-compliant study was approved by the institutional review board. After information on radiation risk was given, written informed consent was obtained from 25 participants with no history of small-bowel disease (mean age, 58 years; 19 men) who had undergone single-level dynamic CT. Thirty seconds after the intravenous administration of contrast material, a serial dynamic acquisition, consisting of 10 images obtained 5 seconds apart, was performed. Enhancement measurements were obtained over time from the small-bowel wall and the aorta. Three independent readers qualitatively assessed small-bowel conspicuity. Quantitative and qualitative data were analyzed during the arterial phase, the enteric phase (which represented peak small-bowel mural enhancement), and the venous phase. Statistical analysis included paired Student t test and Wilcoxon signed rank test with Bonferroni correction. A P value less than .05 was used to indicate a significant difference. RESULTS: The mean time to peak enhancement of the small-bowel wall was 49.3 seconds +/- 7.7 (standard deviation) and 13.5 seconds +/- 7.6 after peak aortic enhancement. Enhancement values were highest during the enteric phase (P < .05). Regarding small-bowel conspicuity, images obtained during the enteric phase were most preferred qualitatively; there was a significant difference between the enteric and arterial phases (P < .001) but not between the enteric and venous phases (P = .18). CONCLUSION: At multi-detector row CT, peak mural enhancement of the normal small bowel occurs on average about 50 seconds after intravenous administration of contrast material or 14 seconds after peak aortic enhancement.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To prospectively evaluate, for the depiction of simulated hypervascular liver lesions in a phantom, the effect of a low tube voltage, high tube current computed tomographic (CT) technique on image noise, contrast-to-noise ratio (CNR), lesion conspicuity, and radiation dose. MATERIALS AND METHODS: A custom liver phantom containing 16 cylindric cavities (four cavities each of 3, 5, 8, and 15 mm in diameter) filled with various iodinated solutions to simulate hypervascular liver lesions was scanned with a 64-section multi-detector row CT scanner at 140, 120, 100, and 80 kVp, with corresponding tube current-time product settings at 225, 275, 420, and 675 mAs, respectively. The CNRs for six simulated lesions filled with different iodinated solutions were calculated. A figure of merit (FOM) for each lesion was computed as the ratio of CNR2 to effective dose (ED). Three radiologists independently graded the conspicuity of 16 simulated lesions. An anthropomorphic phantom was scanned to evaluate the ED. Statistical analysis included one-way analysis of variance. RESULTS: Image noise increased by 45% with the 80-kVp protocol compared with the 140-kVp protocol (P < .001). However, the lowest ED and the highest CNR were achieved with the 80-kVp protocol. The FOM results indicated that at a constant ED, a reduction of tube voltage from 140 to 120, 100, and 80 kVp increased the CNR by factors of at least 1.6, 2.4, and 3.6, respectively (P < .001). At a constant CNR, corresponding reductions in ED were by a factor of 2.5, 5.5, and 12.7, respectively (P < .001). The highest lesion conspicuity was achieved with the 80-kVp protocol. CONCLUSION: The CNR of simulated hypervascular liver lesions can be substantially increased and the radiation dose reduced by using an 80-kVp, high tube current CT technique.