980 resultados para SHELL NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising method for assembling carbon nanotubes (CNTs) and poly(diallyldimethylammonium chloride) protected Prussian blue nanoparticles (P-PB) to form three-dimensional (3D) nanostructured films is proposed. The electrostatic interaction, combined with layer-by-layer self-assembly (LBL), between negatively charged CNTs and positively charged P-PB is strong enough to drive the formation of the 3D nanostructured films. Thus, prepared multilayer films were characterized by ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel hydrogen peroxide biosensor was fabricated that is based on horseradish peroxidase-Au nanoparticles immobilized on a viologen-modified glassy carbon electrode (GCE) by amino cation radical oxidation in basic solution. The immobilized BAPV acts as a mediator and a covalent linker between GCE and the Au nanoparticles. The biosensor exhibited fast response, good reproducibility, and long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdS nanoparticles were successfully prepared by polyol method with PVP-K30 as a surfactant. The microstructure, size and morphology of the products were investigated in detail by XRD, TEM and SEM. The results indicate that uniform CdS nanospheres were achieved. Photoluminescence properties of the resulted nanoparticles (S1 and S3) were investigated, and the results indicate that the CdS nanoparticles could be used as a potential blue light emitting material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show the potential application of Er3+-doped BaF2 nanoparticles prepared from microemulsion technology for 1.5 mu m amplification in telecommunication. Nanoparticles with different sizes of about 8, 10, and 20.5 nm were prepared. The XRD patterns showed the excursion of diffraction peaks. When the particle size is smaller or the diffraction angle is larger, this kind of excursion will be more serious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we demonstrated dimethyldioctadecylammonium bromide (DODAB), a cationic lipid, bilayer coated Au nanoparticles (AuNPs) could efficiently deliver two types of plasmid DNA into human embryonic kidney cells (HEK 293) in the presence of serum. The transfection efficiency of AuNPs was about five times higher than that of DODAB. The interaction of AuNPs with DNA was characterized with dye intercalation assay and agarose gel electrophoresis. The morphology of the complex of AuNPs with DNA was observed with scanning electron microscope (SEM). The intracellular trafficking of the complex was monitored with transmission electron microscope (TEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Ru(bpy)(3)](2+)-doped silica (RuSi) nanoparticles were synthesized by using a water/oil microemulsion method. Stable electrochemiluminescence (ECL) was obtained when the RuSi nanoparticles were immobilized on a glassy carbon electrode by using tripropylamine (TPA) as a coreactant. Furthermore, the ECL of the RuSi nanoparticles with layer-by-layer biomolecular coatings was investigated. Squential self-assembly of the polyelectrolytes and biomolecules on the RuSi nanoparticles gave nanocomposite suspensions, the ECL of which decreased on increasing the number of bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial enzyme mimetics are a current research interest because natural enzymes bear some serious disadvantages, such as their catalytic activity can be easily inhibited and they can be digested by proteases. A very recently study reported by Yan et al. has proven that Fe3O4 magnetic nanoparticles (MNPs) exhibit an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, though MNPs are usually thought to be biological and chemical inert (Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X. Y. Nat. Nanotechnol. 2007, 2, 577-583).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorimetric assay based on the unique surface plasmon resonance properties of metallic nanoparticles has received considerable attention in bioassay due to its simplicity, high sensitivity, and low cost. Most of colorimetric methods previously reported employed gold nanoparticles (GNPs) as sensing elements. In this work, we develop a sensitive, selective, simple, and label-free colorimetric assay using unmodified silver nanoparticle (AgNP) probes to detect enzymatic reactions. Enzymatic reactions concerning adenosine triphosphate (ATP) dephosphorylation by calf intestine alkaline phosphatase (CLAP) and peptide phosphorylation by protein kinase A (PKA) were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, rapid and ultrasensitive colorimetric detection of protein using aptamer-Au nanoparticles (AuNPs) conjugates based on a dot-blot array has been developed, which was combined with the unique optical properties of AuNPs, enabling the visual detection of protein within minutes without any instrument.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, varieties of lipid bilayer-protected gold nanoparticles (AuNPs) were synthesized through a simple wet chemical method, and then the effect of freeze-thawing on the as-prepared AuNPs was investigated. The freeze-thawing process induced fusion or fission of lipid bilayers tethered on the AuNPs. The UV-vis spectra and transmission electron microscopy experiments revealed that the disruption of lipid bilayer structures on the nanoparticles led to the fusion or aggregation of AuNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of the complex of cationic lipid with nucleic acid, especially when facing serum, is crucial for the efficiency of gene delivery. Here, we demonstrated that the stability of the complex of didodecyldimethylammonium bromide (DDAB, a cationic lipid) with DNA in the presence of serum dramatically increased after coating DDAB onto the surface of the gold nanoparticles. The stability of the complex was demonstrated with dye intercalation assay, and agarose gel electrophoresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers; labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers; tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged signal-aptamer sandwich type was formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical Ru(bpy)(3)(2+)-doped silica (RuSi) nanoparticles were prepared via a water-in-oil microemulsion approach. The electrochemical and electrochemiluminescent properties of the RuSi nanoparticles immobilized on an indium tin oxide (ITO) electrode were investigated. Further, electrochemiluminescence (ECL) of the RuSi nanoparticles with covalently coated biomacromolecules was studied. By covalent cross-linking with glutaraldehyde, gamma-(aminopropyl) triethoxysilane (APTES)-pretreated RuSi nanoparticles were coupled with different concentrations of bovine serum albumin (BSA), hemoglobin, and myoglobin, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered mesoporous silica (MCM-41) particles with different morphologies were synthesized through a simple hydrothermal process. Then these silica particles were functionalized with luminescent YVO4:EU3+ layers via the Pechini sol-gel process. The obtained YVO4:Eu3+ and MCM-41 composites, which maintained the mesoporous structure of MCM-41 and the red luminescence property of YVO4:Eu3+ were investigated as drug delivery systems using ibuprofen (IBU) as model drug. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption, and photoluminescence (PL) spectra, respectively.