961 resultados para SELECTIVE DETECTION
Resumo:
The paper examines the suitability of the generalized data rule in training artificial neural networks (ANN) for damage identification in structures. Several multilayer perceptron architectures are investigated for a typical bridge truss structure with simulated damage stares generated randomly. The training samples have been generated in terms of measurable structural parameters (displacements and strains) at suitable selected locations in the structure. Issues related to the performance of the network with reference to hidden layers and hidden. neurons are examined. Some heuristics are proposed for the design of neural networks for damage identification in structures. These are further supported by an investigation conducted on five other bridge truss configurations.
Resumo:
The selective withdrawal of pituitary gonadotropins through specific antibodies is known to cause disruption of spermatogenesis. The cellular mechanism responsible for the degenerative changes under isolated effect of luteinizing hormone (LH) deprivation is not clear. Using antibodies specific to LH we have investigated the effect of immunoneutralization of LH on apoptotic cell death in the testicular cells of the immature and the adult rats. Specific neutralization of LH resulted in apoptotic cell death of germ cells, both in the immature and the adult rats. The germ cells from control animals showed predominantly high molecular weight DNA, while the antiserum treated group showed DNA cleavage into low molecular weight DNA ladder characteristic of apoptosis. This pattern could be observed within 24 h of a/s administration and the effect could be reversed by testosterone. The germ cells were purified by centrifugal elutriation and the vulnerability of germ cell types to undergo apoptosis under LH deprivation was investigated. The round spermatids and the pachytene spermatocytes were found to be the most sensitive germ cells to lack of LH and underwent apoptosis. Interestingly, spermatogonial cells were found to be the least sensitive germ cells to the lack of LH in terms of apoptotic cell death. Results show that LH, in addition to being involved in the germ cell differentiation, is also involved in cell survival and prevent degeneration of germ cells during spermatogenesis. Apoptotic DNA fragmentation may serve as a useful marker for the study of hormonal regulation of spermatogenesis and the specific neutralization of gonadotropic hormones can be a reliable model for the study of the molecular mechanism of apoptosis.
Resumo:
A link failure in the path of a virtual circuit in a packet data network will lead to premature disconnection of the circuit by the end-points. A soft failure will result in degraded throughput over the virtual circuit. If these failures can be detected quickly and reliably, then appropriate rerouteing strategies can automatically reroute the virtual circuits that use the failed facility. In this paper, we develop a methodology for analysing and designing failure detection schemes for digital facilities. Based on errored second data, we develop a Markov model for the error and failure behaviour of a T1 trunk. The performance of a detection scheme is characterized by its false alarm probability and the detection delay. Using the Markov model, we analyse the performance of detection schemes that use physical layer or link layer information. The schemes basically rely upon detecting the occurrence of severely errored seconds (SESs). A failure is declared when a counter, that is driven by the occurrence of SESs, reaches a certain threshold.For hard failures, the design problem reduces to a proper choice;of the threshold at which failure is declared, and on the connection reattempt parameters of the virtual circuit end-point session recovery procedures. For soft failures, the performance of a detection scheme depends, in addition, on how long and how frequent the error bursts are in a given failure mode. We also propose and analyse a novel Level 2 detection scheme that relies only upon anomalies observable at Level 2, i.e. CRC failures and idle-fill flag errors. Our results suggest that Level 2 schemes that perform as well as Level 1 schemes are possible.
Resumo:
We report the C-HETSERF experiment for determination of long- and short-range homo- and heteronuclear scalar couplings ((n)J(HH) and (n)J(XH), n >= 1) of organic molecules with a low sensitivity dilute heteronucleus in natural abundance. The method finds significant advantage in measurement of relative signs of long-range heteronuclear total couplings in chiral organic liquid crystal. The advantage of the method is demonstrated for the measurement of residual dipolar couplings (RDCs) in enantiomers oriented in the chiral liquid crystal with a focus to unambiguously assign R/S designation in a 2D spectrum. The alignment tensor calculated from the experimental RDCs and with the computed structures of enantiomers obtained by DFT calculations provides the size of the back-calculated RDCs. Smaller root-mean-square deviations (rmsd) between experimental and calculated RDCs indicate better agreement with the input structure and its correct designation of the stereogenic center.
Resumo:
Benzyltriethylammonium tetrathiomolybdate, [PhCH2NEt3](2)MoS4, 1 deprotects propargyl ethers of alcohols and phenols in a selective manner in high yields. Easily reducible groups like nitro, aldehyde, keto and allyl are not affected.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.
Resumo:
Polyaniline (PANI) is one of the most extensively used conjugated polymers in the design of electrochemical sensors. In this study, we report electrochemical dye detection based on PANI for the adsorption of both anionic and cationic dyes from solution. The inherent property of PANI to adsorb dyes has been explored for the development of electrochemical detection of dye in solution. The PANI film was grown on electrode via electrochemical polymerization. The as grown PANI film could easily adsorb the dye in the electrolyte solution and form an insulating layer on the PANI coated electrode. As a result, the current intensity of the PANI film was significantly altered. Furthermore, PANI coated stainless steel (SS) electrodes show a change in the current intensity of Fe2+/Fe3+ redox peaks due to the addition of dye in electrolyte solution. PANI films coated on both Pt electrodes and non-expensive SS electrodes showed the concentration of dye adsorbed is directly proportional to the current intensity or potential shift and thus can be used for the quantitative detection of textile dyes at very low concentrations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Several pi-electron rich fluorescent aromatic compounds containing trimethylsilylethynyl functionality have been synthesized by employing Sonogashira coupling reaction and they were characterized fully by NMR (H-1, C-13)/IR spectroscopy. Incorporation of bulky trimethylsilylethynyl groups on the peripheral of the fluorophores prevents self-quenching of the initial intensity through pi-pi interaction and thereby maintains the spectroscopic stability in solution. These compounds showed fluorescence behavior in chloroform solution and were used as selective fluorescence sensors for the detection of electron deficient nitroaromatics. All these fluorophores showed the largest quenching response with high selectivity for nitroaromatics among the various electron deficient aromatic compounds tested. Quantitative analysis of the fluorescence titration profile of 9,10-bis(trimethylsilylethynyl) anthracene with picric acid provided evidence that this particular fluorophore detects picric acid even at ppb level. A sharp visual detection of 2,4,6-trinitrotoluene was observed upon subjecting 1,3,6,8-tetrakis (trimethylsilylethynyl) pyrene fluorophore to increasing quantities of 2,4,6-trinitrotoluene in chloroform. Furthermore, thin film of the fluorophores was made by spin coating of a solution of 1.0 x 10(-3) M in chloroform or dichloromethane on a quartz plate and was used for the detection of vapors of nitroaromatics at room temperature. The vapor-phase sensing experiments suggested that the sensing process is reproducible and quite selective for nitroaromatic compounds. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics makes these fluorophores as promising fluorescence sensory materials for nitroaromatic compounds (NAC) with a detection limit of even ppb level as judged with picric acid.
Resumo:
A neural network has been used to predict the flow intermittency from velocity signals in the transition zone in a boundary layer. Unlike many of the available intermittency detection methods requiring a proper threshold choice in order to distinguish between the turbulent and non-turbulent parts of a signal, a trained neural network does not involve any threshold decision. The intermittency prediction based on the neural network has been found to be very satisfactory.
Resumo:
In this paper, we propose a new fault-tolerant distributed deadlock detection algorithm which can handle loss of any resource release message. It is based on a token-based distributed mutual exclusion algorithm. We have evaluated and compared the performance of the proposed algorithm with two other algorithms which belong to two different classes, using simulation studies. The proposed algorithm is found to be efficient in terms of average number of messages per wait and average deadlock duration compared to the other two algorithms in all situations, and has comparable or better performance in terms of other parameters.
Resumo:
High sensitivity detection techniques are required for indoor navigation using Global Navigation Satellite System (GNSS) receivers, and typically, a combination of coherent and non- coherent integration is used as the test statistic for detection. The coherent integration exploits the deterministic part of the signal and is limited due to the residual frequency error, navigation data bits and user dynamics, which are not known apriori. So, non- coherent integration, which involves squaring of the coherent integration output, is used to improve the detection sensitivity. Due to this squaring, it is robust against the artifacts introduced due to data bits and/or frequency error. However, it is susceptible to uncertainty in the noise variance, and this can lead to fundamental sensitivity limits in detecting weak signals. In this work, the performance of the conventional non-coherent integration-based GNSS signal detection is studied in the presence of noise uncertainty. It is shown that the performance of the current state of the art GNSS receivers is close to the theoretical SNR limit for reliable detection at moderate levels of noise uncertainty. Alternate robust post-coherent detectors are also analyzed, and are shown to alleviate the noise uncertainty problem. Monte-Carlo simulations are used to confirm the theoretical predictions.
Resumo:
In this paper, we consider the application of belief propagation (BP) to achieve near-optimal signal detection in large multiple-input multiple-output (MIMO) systems at low complexities. Large-MIMO architectures based on spatial multiplexing (V-BLAST) as well as non-orthogonal space-time block codes(STBC) from cyclic division algebra (CDA) are considered. We adopt graphical models based on Markov random fields (MRF) and factor graphs (FG). In the MRF based approach, we use pairwise compatibility functions although the graphical models of MIMO systems are fully/densely connected. In the FG approach, we employ a Gaussian approximation (GA) of the multi-antenna interference, which significantly reduces the complexity while achieving very good performance for large dimensions. We show that i) both MRF and FG based BP approaches exhibit large-system behavior, where increasingly closer to optimal performance is achieved with increasing number of dimensions, and ii) damping of messages/beliefs significantly improves the bit error performance.
Resumo:
Filtering methods are explored for removing noise from data while preserving sharp edges that many indicate a trend shift in gas turbine measurements. Linear filters are found to be have problems with removing noise while preserving features in the signal. The nonlinear hybrid median filter is found to accurately reproduce the root signal from noisy data. Simulated faulty data and fault-free gas path measurement data are passed through median filters and health residuals for the data set are created. The health residual is a scalar norm of the gas path measurement deltas and is used to partition the faulty engine from the healthy engine using fuzzy sets. The fuzzy detection system is developed and tested with noisy data and with filtered data. It is found from tests with simulated fault-free and faulty data that fuzzy trend shift detection based on filtered data is very accurate with no false alarms and negligible missed alarms.
Resumo:
Ytterbium triflate catalyses the deprotection of tert-butyl esters selectively in the presence of other esters under mild conditions in almost quantitative yields. The reactions are carried out in nitromethane (45degrees - 50degreesC) using 5 mole percent of the catalyst.